
Synchronization Primitives for a Multiprocessor:

A Formal Speci�cation

A. D. Birrell, J. V. Guttag, J. J. Horning, R. Levin

August 20, 1987

SRC Research Report 20

i

John Guttag's permanent address is MIT Laboratory for Computer Science, 545

Technology Square, Cambridge, MA 02139, U.S.A.

This research was supported in part by the Advanced Research Projects Agency

of the Department of Defense, monitored by the O�ce of Naval Research under

contract N00014-83-K-0125, and by the National Science Foundation under grant

DCR-8411639.

c
Digital Equipment Corporation 1987

This work may not be copied or reproduced in whole or in part for any commercial

purpose. Permission to copy in part without payment of fee is granted for nonpro�t

educational and research purposes provided that all such whole or partial copies

include the following: a notice that such copying is by permission of the Systems

Research Center of Digital Equipment Corporation in Palo Alto, California; an

acknowledgment of the authors and individual contributors to the work; and all

applicable portions of the copyright notice. Copying, reproducing, or republishing

for any other purpose shall require a license with payment of fee to the Systems

Research Center. All rights reserved.

ii

Abstract

Formal speci�cations of operating system interfaces can be a useful part of their

documentation. We illustrate this by documenting the Threads synchronization

primitives of the Taos operating system. We start with an informal description,

present a way to formally specify interfaces in concurrent systems, and then give

a formal speci�cation of the synchronization primitives. We brie
y discuss both

the implementation and what we have learned from using the speci�cation for more

than a year. Our main conclusion is that programmers untrained in reading formal

speci�cations have found this one helpful in getting their work done.

iii

Introduction

The careful documentation of interfaces is an important step in the production of

software upon which other software is to be built. If people are to use software

without having to understand its implementation, documentation must convey

semantic as well as syntactic information. When the software involves concurrency,

adequate documentation is particularly hard to produce, since the range of possible

behaviors is likely to be large and di�cult to characterize [Jones 83].

We believe that operating system documentation containing formal speci�cations

can be signi�cantly better than documentation restricted to informal or semi-formal

descriptions. It can be made more precise and complete, and is more likely to

be interpreted consistently by various readers. Our experience in specifying and

documenting the synchronization facilities of DEC/SRC's Threads package supports

this view.

The Threads package implements concurrent threads of control* for the Taos

operating system [McJones 87] and application programs running on our Fire
y

multiprocessor workstation [Thacker 87]. The package supports large numbers of

concurrent threads, and permits multiple concurrent threads within an address

space. The synchronization facilities we describe permit threads to cooperate in the

use of shared memory.

We begin with an informal description of the Threads synchronization primitives.

These are similar to those in many other systems, but their use on a multiprocessor

raises questions about their precise semantics that are di�cult to answer using

informal descriptions.

We brie
y describe the formal language we use to specify interfaces involving

concurrency, and then present the speci�cation itself. We intend to give the reader

a complete and precise understanding of the properties that client programmers

may rely on when using the Threads synchronization primitives. The speci�cation

should answer any questions about how our primitives di�er from others with which

the reader is familiar.

We next discuss the implementation of Threads. It is chie
y interesting for the

way e�ciency is obtained despite limited hardware support. The need for e�ciency

* \Lightweight processes"; we avoid the word \process" because of its connotation

of \address space" in some operating systems. Saltzer credits the term \thread" to

V. Vyssotsky [Saltzer 66].

1

led to an implementation that has a rather di�erent structure than the speci�cation

might suggest. This illustrates how speci�cations can protect clients from needing

to know implementation details.

Finally, we discuss how the formal speci�cation has been and is being used by

programmers.

Informal Description

The Threads package implements a Modula-2+ [Rovner 86] interface for creating

and controlling a virtually unlimited number of threads, which may or may not share

memory. This paper is concerned only with its synchronization facilities. These are

rather simple, and are derived from the concepts ofmonitors and condition variables

�rst outlined by Hoare [Hoare 74]. Their semantics are similar to those provided

by Mesa [Lampson 80]. The synchronization facilities use three main types: Mutex,

Condition, and Semaphore.

As far as clients of Threads are concerned, all threads can execute concurrently.

The Threads implementation is responsible for assigning threads to real processors.

The way in which this assignment is made a�ects performance, but does not a�ect

the semantics of the synchronization primitives. The programmer can reason as

if there were as many processors as threads. The Threads package also includes

facilities for a�ecting the assignment of threads to real processors (for example, a

simple priority scheme), but our speci�cation is independent of these facilities.

Mutual Exclusion: Acquire, Release

A mutex [Dijkstra 68] is the basic tool enabling threads to cooperate on access to

shared variables. A mutex is normally used to achieve an e�ect similar to monitors,

ensuring that a set of actions on a group of variables can be made atomic relative

to any other thread's actions on these variables. Atomicity can be achieved by

arranging that:

� All reads and writes of the shared variables occur within critical sections

associated with these variables.

� Each critical section is executed from start to �nish without any other thread

entering a critical section associated with these variables.

� Each action that is to be atomic is entirely contained within a single critical

section.

2

Such mutual exclusion completely serializes the critical sections, and hence the

atomic actions they contain. It can be implemented using the procedures Acquire

and Release. A mutex \m" is associated with the set of variables, and each critical

section is bracketed by Acquire(m) and Release(m) actions. The semantics of

Acquire and Release ensure that these bracketed sections are indeed critical sections.

Critical sections are so frequently useful that Modula-2+ includes syntactic sugar

for them. The statement:

LOCK e DO statement-sequence END

is equivalent to:

LET m=e; Acquire(m); TRY statement-sequence FINALLY Release(m) END

This syntax encourages the use of correctly bracketed occurrences of Acquire and

Release. It also makes it easy for the compiler to produce highly optimized code

for such occurrences. (The TRY : : : FINALLY construct ensures that Release will be

called regardless of whether control leaves the statement-sequence because it has

been completed or because an exception has been raised.) Other uses of Acquire

and Release are generally discouraged.

Condition Variables: Wait, Signal, Broadcast

Condition variables make it possible for a thread to suspend its execution while

awaiting an action by some other thread. For example, the consumer in a producer-

consumer algorithm might need to wait for the producer. Or the implementation

of a higher level locking scheme might require that some threads wait until a lock

is available.

The normal paradigm for using condition variables is as follows. A condition

variable \c" is always associated with some shared variables protected by a mutex

\m" and a predicate based on those shared variables. A thread acquires m (i.e.,

enters a critical section) and evaluates the predicate to see if it should call Wait(m, c)

to suspend its execution. This call atomically releases the mutex (i.e., ends the

critical section) and suspends execution of that thread.

After any thread changes the shared variables so that c's predicate might be

satis�ed, it calls Signal(c) or Broadcast(c). (Although the changes may be made

only within a critical section, the thread may exit the critical section before this

call.) Signal and Broadcast allow blocked threads to resume execution and re-

acquire the mutex. When a thread returns from Wait it is in a new critical section.

It re-evaluates the predicate and determines whether to proceed or to call Wait

again.

3

There are several subtleties in the semantics of these procedures, and it is di�cult

to express them correctly in an informal description. This is the area where we have

found the formal speci�cation most useful.

� Even if threads take care to call Signal only when the predicate is true, it may

become false before a waiting thread resumes execution. Some other thread

may enter a critical section �rst and invalidate the predicate. Therefore when

a thread returns from aWait it must re-evaluate its predicate and be prepared

to call Wait again. Return from Wait is only a hint [Lampson 84] that

must be con�rmed. By contrast, with Hoare's condition variables threads

are guaranteed that the predicate is true on return from Wait. Our looser

speci�cation reduces the obligations of the signalling thread and leads to a

more e�cient implementation on our multiprocessor.

� The two things that Wait(m, c) must do �rst|leave the critical section and

suspend execution of the thread|must be in one atomic action relative to any

call of Signal. The following sequence would be incorrect: one thread leaves

its critical section; then another thread enters a critical section, modi�es the

shared variables, and calls Signal (which �nds nothing to be unblocked); and

then the �rst thread suspends execution. This is familiar to most operating

system designers as a \wakeup-waiting race" [Saltzer 66]. Our semantics

specify, and our implementation ensures, that no signals are lost between

these two actions.

� There is a distinction between Signal and Broadcast. Signal is used to

unblock one waiting thread; Broadcast is used to unblock all of them. Using

Signal is preferable (for e�ciency) when only one blocked thread can bene�t

from the change (for example, when freeing a bu�er back into a pool).

Broadcast is necessary (for correctness) if multiple threads should resume (for

example, when releasing a \writer" lock on a �le might permit all \readers"

to resume).

� If Signal is used, all threads waiting on the same condition variable must be

waiting for satisfaction of the same predicate. If Broadcast is always used

instead, the predicates for di�erent waiting threads need not all be the same.

4

Semaphores: P, V

The Threads package also provides binary semaphores with their traditional P

and V operations. The implementation of semaphores is identical to mutexes, but

they are used di�erently.* There is no notion of a thread \holding" a semaphore,

and no precondition on executing V, so calls of P and V need not be textually

linked.

We discourage programmers from using semaphores directly, since we prefer the

additional structure that comes with the use of mutexes and condition variables.

However they are required for synchronizing with interrupt routines. This is

because an interrupt routine cannot protect shared data with a mutex|because

the interrupt might have pre-empted a thread in a critical section protected by that

mutex|and using Wait and Signal to synchronize requires use of an associated

mutex. Instead, a thread waits for an interrupt routine action by calling P(sem),

and the interrupt routine unblocks it by calling V(sem).

Alerting: Alert, TestAlert, AlertWait, AlertP

Alerting provides a polite form of interrupt, used in conjunction with both

semaphores and condition variables, typically to implement things such as timeouts

and aborts. It allows a thread to request that another thread desist from a

computation. It is generally used in situations where the decision to make this

request happens at an abstraction level higher than that in which the thread is

blocked, so that the appropriate condition variable or semaphore is not readily

accessible.

Calling Alert(t) is a request that the thread t raise the exception Alerted. The

procedure TestAlert allows a thread to see if there is a pending request for it to

raise Alerted. AlertWait is similar to Wait, except that AlertWait may raise Alerted

rather than returning. The choice between AlertWait and Wait depends on whether

or not the calling thread is to respond to an Alert at the point of the call. The

procedure AlertP provides the analogous facility for semaphores.

* \We used the semaphores in two completely di�erent ways. The di�erence is

so marked that, looking back, one wonders whether it was really fair to present

the two ways as uses of the very same primitives. On the one hand, we have the

semaphores used for mutual exclusion, on the other hand, the private semaphores."

[Dijkstra 68]

5

Speci�cation Approach

We use the Larch two-tiered approach to speci�cation [Wing 83, Guttag 85a, b].

The Larch Shared Language tier [Guttag 86a] is algebraic, and de�nes mathematical

abstractions that can be used in the interface language tier to specify program

interfaces. As it happens, all the abstractions needed for the Threads speci�cation

are well known (e.g., booleans, integers, and sets) and appear in the Larch Shared

Language Handbook [Guttag 86b], so we do not discuss them here.

The logical basis for our treatment of concurrency is very similar to the one

discussed in [Lamport 83, 86]. However, our speci�cation deals only with safety

properties, such as partial correctness, not with liveness properties.

Our speci�cations of procedures for concurrent programs are similar to our

speci�cations of procedures for sequential programs. In both cases, the speci�cations

prescribe the observable e�ects of procedures, without saying how they are to be

achieved. In a sequential program, the states between a procedure call and its return

cannot be observed in the calling environment. Thus we can specify a procedure by

giving a predicate relating just the state when the procedure is called and the state

when it returns [Hoare 71]. Similarly, an atomic action in a concurrent program

has no visible internal structure; its observable e�ects can also be speci�ed by a

predicate on just two states.

Our method is based on the observation that any behavior of a concurrent system

can be described as the execution of a sequence of atomic actions. A key property

of atomic actions is serializability, which means that each concurrent execution of a

group of atomic actions has the same observable e�ects as some sequential execution

of the same actions. Serializability allows us to ignore concurrency in reasoning

about the e�ects of an atomic action. Each atomic action appears indivisible, both

to the thread invoking it and to all other threads.

In specifying atomic actions, we don't specify how atomicity is to be achieved, only

that it must be. In an implementation, atomic actions may proceed concurrently

as long as the concurrency isn't observable. Atomicity is intimately related to

abstraction; at each level of abstraction atomicity is ensured by using sequences of

lower-level actions, some of which are known to be atomic relative to each other.

For example, the atomicity of the Threads synchronization primitives is ensured by

the atomicity of the underlying hardware's test-and-set instruction.

Atomicity requirements constrain both the thread executing the atomic action

and all other threads that share variables with the action. For such a set of

6

actions to be atomic relative to each other, their implementations must all adhere to

some synchronization protocol. It is necessary to consider them all when verifying

atomicity, just as it is necessary to consider all the operations of an abstract data

type when verifying its implementation [Liskov 86].

Atomic procedures execute just one atomic action per call. Each can be speci�ed in

terms of just two states: the state immediately preceding and the state immediately

following the action. They are particularly easy to specify and to understand,

since they behave so much like procedures in a sequential environment. Thus we

would prefer for most procedures to appear atomic to their callers. However, most

concurrent programs contain a few procedures that do not; these present a more

di�cult speci�cation challenge.

The observable e�ects of a non-atomic procedure cannot be described in terms of

just two states. Its e�ects may span more states, and actions of other threads may

be interleaved with its atomic actions. However, each execution of a non-atomic

procedure can be viewed as a sequence of atomic actions. We specify a non-atomic

procedure by giving a predicate that de�nes the allowable sequences of atomic

actions (i.e., sequences of pre-post state pairs). Each execution of the procedure

must be equivalent to such a sequence. Although it is sometimes necessary to

specify constraints on the sequence as a whole, in our example it su�ces to specify

the atomic actions separately.

The Threads interface contains two non-atomic synchronization procedures (Wait

and AlertWait), each executing two visible atomic actions per call. Such procedures

are nearly as easy to specify as atomic procedures. We specify that (the visible e�ect

of) executing the procedure must be equivalent to executing two named actions in

order (possibly separated by actions of other threads), and then write separate

predicates specifying the two actions.

To make these ideas a bit more concrete, consider the following speci�cation from

the Threads interface:

TYPE Mutex = Thread INITIALLY NIL

TYPE Condition = SET OF Thread INITIALLY fg

7

PROCEDURE Wait(VAR m: Mutex; VAR c: Condition)

= COMPOSITION OF Enqueue; Resume END

REQUIRES m = SELF

MODIFIES AT MOST [m, c]

ATOMIC ACTION Enqueue

ENSURES (cpost = insert(c, SELF)) & (mpost = NIL)

ATOMIC ACTION Resume

WHEN (m = NIL) & :(SELF 2 c)

ENSURES mpost = SELF & UNCHANGED [c]

This speci�cation is similar to a sequential Larch speci�cation:

� A REQUIRES clause states a precondition that the implementation may rely

on; it is the responsibility of the caller to ensure that the condition holds at

the start of the procedure's �rst atomic action. The speci�cation does not

constrain the implementation to any particular behavior if the precondition

is not satis�ed. An omitted REQUIRES clause is equivalent to REQUIRES TRUE,

that is, nothing is required.

� A MODIFIES AT MOST clause identi�es the objects that the procedure is

allowed to change.

� An ENSURES clause states a postcondition that the atomic action must

establish.

� An unsubscripted argument formal in a predicate stands for its value in the

pre state|the state in which the atomic action begins. A return formal or

an argument formal subscripted by post stands for the value associated with

the formal in the post state|the state at the conclusion of the atomic action.

To deal with concurrency, we extended sequential Larch in the following ways:

� A WHEN clause states a condition that must be satis�ed for an atomic action

to take place. It is not a precondition of the call, but the called procedure is

obligated to make sure that the condition holds before taking any externally

visible action. A WHEN clause may thus impose a delay until actions of other

threads make its predicate true. An omitted WHEN clause is equivalent to

WHEN TRUE, that is, no delay is required.

� ATOMIC preceding PROCEDURE or ACTION indicates that any execution of

the procedure or action must be atomic relative to the other actions of the

interface.

8

� A COMPOSITION OF clause indicates that any execution of the procedure must

be equivalent to execution of the named actions in the given order, possibly

interleaved with actions of other threads.

� An ATOMIC ACTION clause speci�es a named action in much the same way

as an ATOMIC PROCEDURE speci�cation does. It is within the scope of the

procedure header, and may refer to its formal parameters and results.

� The keyword SELF stands for the identity of the thread executing the speci�ed

action.

Formal Speci�cation

Now we present the formal speci�cation without much commentary. This

speci�cation is self-contained; none of the informal description of threads is needed

to understand its precise semantics. However, it is intended to be used in

conjunction with informal material. In the documentation used at SRC, informal

material is interleaved with the speci�cation, both to provide intuition and to

say how the primitives are intended to be used. Our informal documentation

is somewhat shorter than that given above, because more of the burden of

communicating precise details has been shifted to the formal speci�cation.

Mutex, Acquire, Release

TYPE Mutex = Thread INITIALLY NIL

ATOMIC PROCEDURE Acquire(VAR m: Mutex)

MODIFIES AT MOST [m]

WHEN m = NIL ENSURES mpost = SELF

ATOMIC PROCEDURE Release(VAR m: Mutex)

REQUIRES m = SELF

MODIFIES AT MOST [m]

ENSURES mpost = NIL

If Release(m) is executed when there are several threads waiting to perform

Acquire(m), the WHEN clause of each of them will be satis�ed. Only one thread

will hold m next, because|by atomicity of Acquire|it must appear that one of

the Acquires is executed �rst; its ENSURES clause falsi�es the WHEN clauses of all

the others. Our speci�cation does not say which of the blocked threads will be

unblocked �rst, nor when this will happen.

9

Condition, Wait, Signal, Broadcast

TYPE Condition = SET OF Thread INITIALLY fg

PROCEDURE Wait(VAR m: Mutex; VAR c: Condition)

= COMPOSITION OF Enqueue; Resume END

REQUIRES m = SELF

MODIFIES AT MOST [m, c]

ATOMIC ACTION Enqueue

ENSURES (cpost = insert(c, SELF)) & (mpost = NIL)

ATOMIC ACTION Resume

WHEN (m = NIL) & :(SELF 2 c)

ENSURES mpost = SELF & UNCHANGED [c]

ATOMIC PROCEDURE Signal(VAR c: Condition)

MODIFIES AT MOST [c]

ENSURES (cpost = fg) j (cpost � c)

ATOMIC PROCEDURE Broadcast(VAR c: Condition)

MODIFIES AT MOST [c]

ENSURES cpost = fg

Any implementation that satis�es Broadcast's speci�cation also satis�es Signal's.

We cannot strengthen Signal's postcondition: although our implementation of

Signal usually unblocks just one waiting thread, it may unblock more.

Semaphore, P, V

TYPE Semaphore = (available, unavailable) INITIALLY available

ATOMIC PROCEDURE P(VAR s: Semaphore)

MODIFIES AT MOST [s]

WHEN s = available ENSURES spost = unavailable

ATOMIC PROCEDURE V(VAR s: Semaphore)

MODIFIES AT MOST [s]

ENSURES spost = available

10

Alerts, Alerted, TestAlert, AlertP, AlertWait

VAR alerts: SET OF Thread INITIALLY fg

EXCEPTION Alerted

ATOMIC PROCEDURE Alert(t: Thread)

MODIFIES AT MOST [alerts]

ENSURES alertspost = insert(alerts, t)

ATOMIC PROCEDURE TestAlert() RETURNS(b: bool)

MODIFIES AT MOST [alerts]

ENSURES (b = (SELF 2 alerts)) & (alertspost = delete(alerts, SELF))

ATOMIC PROCEDURE AlertP(VAR s: Semaphore) RAISESfAlertedg

MODIFIES AT MOST [s, alerts]

RETURNS WHEN s = available

ENSURES (spost = unavailable) & UNCHANGED [alerts]

RAISES Alerted WHEN (SELF 2 alerts)

ENSURES (alertspost = delete(alerts, SELF)) & UNCHANGED [s]

PROCEDURE AlertWait(VAR m: Mutex; VAR c: Condition) RAISESfAlertedg

= COMPOSITION OF Enqueue; AlertResume END

REQUIRES m = SELF

MODIFIES AT MOST [m, c, alerts]

ATOMIC ACTION Enqueue

ENSURES (cpost = insert(c, SELF)) & (mpost = NIL) & UNCHANGED [alerts]

ATOMIC ACTION AlertResume

RETURNS WHEN (m = NIL) & :(SELF 2 c)

ENSURES (mpost = SELF) & UNCHANGED[c, alerts]

RAISES Alerted WHEN (m = NIL) & (SELF 2 alerts)

ENSURES (mpost = SELF) & (cpost = delete(c, SELF)) &

(alertspost = delete(alerts, SELF))

In both AlertP and AlertWait, the RETURNS and RAISES clauses are not disjoint.

This non-determinism will be discussed later.

11

Implementation

We have two implementations of the Threads package. One runs within any single

process on a normal Unix system. It is implemented using a co-routine mechanism

for blocking one thread and resuming another. We will not discuss that version

further in this paper. Our other implementation runs on the Fire
y, and uses

multiple processors to provide true concurrency.

The Fire
y is a symmetric multiprocessor; each processor is able to address the

entire memory. In general a thread is not concerned about which processors it

executes on, and the scheduler is free to move it from one processor to another.

The implementation of the synchronization primitives has two layers. The top

layer (the user code) is executed in the thread's own address space; the lower layer

(the nub code), in the common kernel (Nub) address space. The purpose of having

code in the user space is to optimize most cases where the synchronization action

will not cause the thread to block, nor cause another thread to resume|for example,

executing the Acquire and Release for a LOCK clause when there is no contention

for its mutex, or executing Signal or Broadcast when there is no thread blocked

on the condition variable. The user code avoids the overhead of calling the Nub in

these cases.

The Nub subroutines execute under the protection of a more primitive mutual

exclusion mechanism, a spin-lock [Jones 80]. The spin-lock is represented by a

globally shared bit: it is acquired by a processor busy-waiting in a test-and-set

loop; it is released by clearing the bit. Nub subroutines acquire the spin-lock,

perform their visible actions, and release the spin-lock.

The Nub maintains queues of threads that have been blocked by Acquire, Wait,

or P actions. It also maintains a \ready pool" of threads that are available for

execution. When a thread is blocked by Acquire, Wait, or P, the Nub looks in the

ready pool to see if there is a thread to run on the processor now available. When

threads are added to the ready pool by Release, Signal, Broadcast, or V, the Nub

looks for a suitable processor for them to execute on. The Nub also implements a

priority-based scheduling algorithm and a time-slicing algorithm.

Further complications (which we will not discuss here) arise because synchroniza-

tion data might be allocated in non-resident memory.

12

Mutexes and semaphores

A mutex is represented by a pair (Lock-bit, Queue). The Lock-bit is 1 if a thread

is in a critical section protected by the mutex, and is 0 otherwise. In terms of the

formal speci�cation, the Lock-bit is 0 i� the mutex is NIL. The Queue contains the

threads that are blocked in Acquire (awaiting its WHEN condition).

The user code for Acquire and Release is designed for fast execution of a LOCK

clause when there is no contention for its mutex. In this case an Acquire-Release

pair executes a total of 5 instructions, taking 10 microseconds on a MicroVAX II.

This code is compiled entirely in-line. Acquire consists of two sequential actions:

test-and-set the Lock-bit (implemented atomically in the hardware); call a Nub

subroutine if the bit was already set. The user code for Release is two sequential

actions: clear the Lock-bit; call a Nub subroutine if the Queue is not empty.

The Nub subroutine for Acquire (after acquiring the spin-lock) �rst adds the

calling thread to the Queue. Then it tests the Lock-bit again. If it is still 1, this

thread is de-scheduled and the general scheduling algorithm is invoked to determine

what to do with this processor. On the other hand, if the Lock-bit is now 0, the

thread is removed from the Queue, the spin-lock is released, and the entire Acquire

operation (beginning at the test-and-set) is retried.

The Nub subroutine for Release (after acquiring the spin-lock) checks to see if

there are any threads in the Queue. If there are, it takes one, adds it to the ready

pool, and invokes the general scheduling algorithm, which will assign the thread to

a suitable processor if one is available.

The implementation of semaphores is the same as mutexes: P is the same as

Acquire and V is the same as Release.

Condition variables

The semantics of Wait and Signal could be achieved by representing each

condition variable as a semaphore, and implementing Wait(m, c) as

Release(m); P(c); Acquire(m)

and Signal(c) as V(c). The one bit in the semaphore c would cover the

wakeup-waiting race. Unfortunately, this implementation does not generalize to

Broadcast(c). The reason is that there might be arbitrarily many threads in the

race (at the semicolon between Release(m) and P(c)), and the implementation of

Broadcast would have no way of indicating that they should all resume execution.

13

Our implementation uses an eventcount [Reed 77] to resolve this problem. An

eventcount is an atomically-readable, monotonically-increasing integer variable.

The representation of a condition variable is a pair (Eventcount, Queue).

The user implementation of Wait(m, c) is as follows. First it reads c's Eventcount;

say this value is \i". Second, it calls Release(m). Third, it calls a Nub subroutine

Block(c, i). On return from Block it calls Acquire(m). The Nub subroutine

Block �rst acquires the spin-lock. It then compares i with the current value of

c's Eventcount. If they are equal, the current thread (SELF) is added to c's Queue

and de-scheduled; if they are unequal (because there has been an intervening Signal

or Broadcast), Block just returns.

The Nub implementations of Signal and Broadcast (after acquiring the spin-

lock) increment c's Eventcount, then inspect c's Queue. If it is non-empty, Signal

takes one of its threads and adds it to the ready pool; Broadcast does this for all

the threads in Queue. The wakeup-waiting race is handled by c's Eventcount. A

thread executing in Wait will simply return from Block if a Signal or Broadcast has

intervened between the time it read Eventcount and the time it acquired the spin-

lock. It is possible (though unlikely) that Signal will acquire the spin-lock while

more than one thread is trying to acquire it in Wait; if so, Signal will unblock all

such threads.

The user code for Wait, Signal, and Broadcast includes optimizations so that

Signal and Broadcast avoid calling the Nub if there are no threads to unblock.

Discussion

A prose description of the Threads synchronization primitives was written when

the interface was �rst designed [Rovner 85, 86]. While it gave an indication of

how the primitives were intended to be used, it left too many questions about the

guaranteed behavior of the interface unanswered.

To provide more precise information for programmers who were starting to use

the interface, a semi-formal operational speci�cation was written. This description

was both precise and (for the most part) accurate. The main problems with it were

that it was too subtle and that important information was rather widely distributed.

For example, to discover that Signal might unblock more than one thread involved

looking at several procedures and observing that a race condition existed. If one

failed to notice this race condition|and most readers seemed to|one was misled

about the behavior of Signal. This is not a criticism of the particular speci�cation,

14

but rather an indication that it is di�cult to write straightforward operational

speci�cations of concurrent programs. In our speci�cation, the weakness of the

guarantee is explicit in Signal's ENSURES clause.

The operational speci�cation was the starting point for our formal speci�cation,

and served us well. The two of us who wrote the formal speci�cation still had

questions for the two involved in the implementation, but never resorted to studying

the actual code.

Our speci�cation has passed the co�ee-stain test. A somewhat condensed version

of the documentation presented here (formal and informal) is the reference of

choice for programmers using the Threads interface and for those responsible for its

implementation. They seem to be able to read our speci�cation and understand its

implications. Two incidents illustrate this; both relate to places where the version

of the speci�cation we �rst released did not conform to the implementation:

� The original speci�cation of AlertWait did not contain \m = NIL &" in the

RAISES clause of AlertResume. That this presented a problem was discovered

in less than an hour by someone with no prior knowledge of either the

interface or the speci�cation technique.

� The second problem was more subtle. In the speci�cation of AlertP and

AlertWait, the WHEN clauses of the normal (RETURNS) and exceptional

(RAISES) cases are not mutually exclusive; this gives their implementations

the right to make arbitrary choices when both are satis�ed. In the original

speci�cation, these procedures were constrained to raise the exception

Alerted if possible. This was consistent with the operational speci�cation.

After our speci�cation was released, a programmer pointed out that the

implementation was non-deterministic: sometimes it raised the exception and

sometimes it didn't. The implementor decided that the e�ciency advantages

gained by allowing non-determinism made a speci�cation change desirable.

We must also report a more worrisome incident:

� An error in the speci�cation that had not been noticed during more than

a year of use was discovered* while this paper was being prepared for

publication. The problem was again in the speci�cation of AlertWait. The

speci�cation incorrectly required that when AlertWait raised the exception

Alerted it left the value of c unchanged. Thus c could contain threads that

were no longer blocked on the condition variable.

* by Greg Nelson, in the course of preparing the review included in this report.

15

We are vexed that it took so long for anyone to notice this error. We can think

of several possible contributing factors:

� AlertWait is the most complicated primitive in this interface, and also the

least familiar. The speci�ers had less experience to fall back on.

� Semaphores and condition variables are similar in many ways. Perhaps

readers, having studied the speci�cation of AlertP (where UNCHANGED [s]

is correct for the Alerted clause), failed to notice the consequences of the

essential di�erence in the abstractions used to describe semaphores and

condition variables.

� Even after the problem was discovered, it was di�cult to convince ourselves

(one at a time) that it was indeed a bug. The most convincing argument was

operational: suppose a thread, t, raises Alerted, then a thread invokes Signal,

which chooses to remove t from c, which means that no blocked thread is

awakened by that Signal.

� Our speci�cation does not deal with liveness properties; it cannot be used to

prove that anything must happen. Since arguments about safety properties

are una�ected by this particular error in the speci�cation, no one was forced

to confront it.

A more encouraging aspect of our experience is the role played by the speci�cation

in insulating clients from the implementation of the Threads package:

� As discussed in the section on implementation, mutexes are implemented

using queues of blocked threads, without recording which thread currently

holds the mutex; this is quite di�erent from what one might guess after

reading our speci�cation. The client programmer, however, need not know

this. The speci�cation abstracts from details of the implementation to

provide a simpler model. (In fact, some programmers have complained

because the debugger doesn't provide a simple way to determine which thread

holds an unavailable mutex.)

� Although the underlying implementation has been reworked several times,

both to improve e�ciency and to make it easy to collect statistics on

contention, the speci�cation of the synchronization primitives (other than

AlertWait) has been unchanged for more than a year. Client programmers

have not needed to respond to, or even know about, the implementation

changes.

16

� Although semaphores and mutexes have identical implementations, the

interface provides distinct types with di�erent speci�cations. Mutexes have

holders and semaphores don't; Release has a REQUIRES clause and V doesn't.

The choice to have two types for the two di�erent ways of using the

underlying mechanism had already been made by the designers when the

formal speci�cation was started. Client programs that rely only on the

speci�ed properties of these types would continue to work even if their

implementations were di�erent.

Our experience with the Threads speci�cation indicates that formal speci�cations

of concurrent programs can be used productively by systems programmers, but it

says little about the ease with which they can be produced. The speci�cation

was written by two of us who have many years of experience in writing formal

speci�cations.

Single small examples can be illustrative, but it is unwise to generalize too much

from them. We are applying these techniques to other system interfaces, both at

MIT and at SRC, and expect to report our results in future papers.

Writing good speci�cations is time consuming. In our experience, the bulk of

the time spent specifying a system goes �rst to understanding the object to be

speci�ed and then to choosing abstractions to help structure the presentation of

that understanding. We spend relatively little time translating our understanding

into the speci�cation language.

Understanding systems with a high degree of concurrency is particularly di�cult.

When studying the designs of such systems, it is often hard to disentangle

the behavior implied by a particular implementation from the behavior that all

implementations should be required to exhibit. At the very least, speci�ers must

have ready access to the designers of the system to answer such questions.

In this paper we have stressed the utility of formal speci�cations in documenting

interfaces. They can contribute structure and regularity. By enforcing precision

they encourage accuracy and completeness. Formal speci�cations are not a

replacement for careful prose documentation. However, they can lead to better

informal documentation by making it unnecessary for the prose to exhibit such a

high level of precision and completeness.

Acknowledgments

Leslie Lamport and Jeannette Wing were both involved in the discussions leading

to this speci�cation, and helped us to understand the issues involved.

17

18

References

[Dijkstra 68] Edsger W. Dijkstra, \The Structure of the `THE'|Multiprogramming

System," Comm. ACM, vol. 11, no. 5, 341{346.

[Guttag 85a] J. V. Guttag, J. J. Horning, and J. M. Wing, \Larch in Five Easy

Pieces," Report 5, Digital Equipment Corporation Systems Research Center, Palo

Alto; portions published separately in [Guttag 85b, 86a, b].

[Guttag 85b] John V. Guttag, James J. Horning, and Jeannette M. Wing, \The Larch

Family of Speci�cation Languages," IEEE Software, vol. 2, no. 5, 24{36.

[Guttag 86a] J. V. Guttag and J. J. Horning, \Report on the Larch Shared Language,"

Science of Computer Programming, vol. 6, 103{134.

[Guttag 86b] J. V. Guttag and J. J. Horning, \A Larch Shared Language Handbook,"

Science of Computer Programming, vol. 6, 135{156.

[Hoare 71] C. A. R. Hoare, \Procedures and Parameters: An Axiomatic Approach,"

Symposium on Semantics of Algorithmic Languages, Springer-Verlag, 102{116.

[Hoare 74] C. A. R. Hoare, \Monitors: An Operating System Structuring Concept,"

Comm. ACM, vol. 17, no. 10, 549{557.

[Jones 80] Anita K. Jones and Peter Schwarz, \Experience Using Multiprocessor

Systems|A Status Report," Computing Surveys, vol. 12, no. 2, 121{165.

[Jones 83] C. B. Jones, \Speci�cation and Design of (Parallel) Programs," Proc. IFIP

Congress '83.

[Lamport 83] Leslie Lamport, \Specifying Concurrent Program Modules," ACM

TOPLAS, vol. 5, no. 2, 190{222.

[Lamport 86] Leslie Lamport, \A Simple Approach To Specifying Concurrent

Systems," Report 15, Digital Equipment Corporation, Systems Research Center,

Palo Alto.

[Lampson 80] B. W. Lampson and D. D. Redell, \Experiences with Processes and

Monitors in Mesa," Comm. ACM, vol. 23, no. 2, 105{117.

[Lampson 84] Butler W. Lampson, \Hints for Computer System Design," IEEE

Software, vol. 1, no. 1, 11{28.

[Liskov 86] Barbara Liskov and John Guttag, Abstraction and Speci�cation in Program

Development, MIT Press/McGraw-Hill.

19

[McJones 87] Paul R. McJones and Garret F. Swart, \Evolving the UNIX System In-

terface to Support Multithreaded Programs," Report to appear, Digital Equipment

Corporation, Systems Research Center, Palo Alto.

[Reed 77] David P. Reed and Rajendra K. Kanodia, \Synchronization with Event-

counts and Sequencers," (abstract only) Proc. Sixth ACM Symposium on Operating

Systems Principles, 91.

[Rovner 85] Paul Rovner, Roy Levin, and John Wick, \On Extending Modula-2 for

Building Large, Integrated Systems," Report 3, Digital Equipment Corporation,

Systems Research Center, Palo Alto.

[Rovner 86] Paul Rovner, \Extending Modula-2 to Build Large, Integrated Systems,"

IEEE Software, vol. 3, no. 6, 46{57.

[Saltzer 66] Jerome Howard Saltzer, \Tra�c Control in a Multiplexed Computer

System," Technical Report MAC-TR-30 (Thesis), Massachusetts Institute of

Technology, Cambridge.

[Thacker 87] Charles P. Thacker and Lawrence C. Stewart, \Fire
y: a Multiprocessor

Workstation," to be published in Proc. Second International Conference on

Architectural Support for Programming Languages and Operating Systems, Palo

Alto, October 5-8, 1987.

[Wing 83] Jeannette Marie Wing, \A Two-Tiered Approach to Specifying Programs,"

Technical Report MIT/LCS/TR-299, Massachusetts Institute of Technology,

Cambridge.

20

