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Abstract

A network object is an object whose methods can

be invoked over a network. This paper describes the

design, implementation, and early experience with a

network objects system for Modula-3. The system is

novel for its overall simplicity. The paper includes

a thorough description of realistic marshaling algo-

rithms for network objects.

1 Introduction

In pure object-oriented programming, clients cannot

access the concrete state of an object directly, but

only via the object’s methods. This methodology ap-

plies beautifully to distributed computing, since the

method calls are a convenient place to insert the com-

munication required by the distributed system. Sys-

tems based on this observation began to appear about

a decade ago, including Argus [12], Eden [1], and

early work of Shapiro’s [18], and more keep arriving

every day. It seems to be the destiny of distributed

programming to become object-oriented, but the de-

tails of the transformation are hazy. Should objects

be mobile or stationary? Should they be communi-

cated by copying or by reference? Should they be

active? Persistent? Replicated? Is the typical object

a menu button or an X server? Is there any differ-

ence between inter-program typechecking and intra-

program typechecking?

This paper contributes a data point for these dis-

cussions by describing a network objects system we

have recently imple~ented for “Modula-3. In addition
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to providing a design rationale, we present a num-

ber of implementation details that have been omitted

from previously published work, including simple al-

gorithms for marshaling and unmarshaling network

objects in a heterogeneous network.

The primary distinguishing aspect of our system

is its simplicity. We restricted our feature set to

those features that we believe are valuable to all

distributed applications (powerful marshaling, strong

type-checking, garbage collection, efficient and conve-

nient access to streams), and we omitted more com-

plex or speculative features (transactions, object mi-

gration, distributed shared memory). Also, we orga-

nized the implementation around a small number of

quite simple interfaces, each of which is described in

this paper. Finally, we believe we have done this with-

out compromising performance: we have not worked

hard on performance, but we believe our design is

compatible with a high-performance implementation.

As in any distributed programming system, argu-

ment values and results are communicated by mar-

shaling them into a sequence of bytes, transmitting

the bytes from one program to the other, and then

unmarshaling them into values in the receiving pro-

gram. The marshaling code is contained in stub mod-

ules that are generated from the object type declara-

tion by a stub generator. Marshaling automatically

handles format differences in the two programs (for

example, different byte orders for representing inte-

gers).

It is difficult to provide fully general marshaling

code in a satisfactory way. Existing systems fail in

one or more of the following ways. Some apply re-

strictions to the types that can be marshaled, typ-

ically prohibiting linked, cyclic or graph-structured

values. Some generate elaborate code for almost any

data type, but the resulting stub modules are exces-

sively large. Some handle a lot of data types, but the

marshaling code is excessively inefficient. We believe

we have achieved a better compromise here by the use

217



of a general-purpose mechanism called Pickles. This

uses the same runtime-type data structures used by

the local garbage collector to perform efficient and

compact marshaling of arbitrarily complicated data

types. Our stub generator produces in-line code for

simple types (for efficiency ), but calls the pickle pack-

age for complicated types (for compactness of stub

code). We believe our pickling machinery’s perfor-

mance is within a factor of two of the performance of

mechanically generated in-line code.

Since we marshal by pickling and the pickle package

will handle any reference type, it’s possible to mar-

shal arguments or results that are objects. There are

two cases. If the object being marshaled (by pick-

ling) is a network object, it is passed as an object

reference (as described later). Alternatively, if the

object being marshaled is not a network object, it is

marshaled by copying the entire object’s value. This

provides a form of object mobility that is satisfactory

for many purposes, For example, a system like Her-

mes [5], though designed for mobile objects, could be

implemented straightforwardly with our mechanisms.

Inter-process byte streams are more convenient and

efficient than RPC for transferring large amounts

of unstructured data, as critics of RPC have often

pointed out. We have addressed this issue by provid-

ing special marshaling support for Modula-3’s st an-

dard stream types (readers and writers). To commu-

nicate a stream from one program to another, a surro-

gate stream is created in the receiving program. Data

is copied over the network between the buffers of the

real stream and the surrogate stream in a way that

minimizes data copies: for both the surrogate stream

and the real stream, data is transferred between the

stream buffer and the kernel via direct calls to read

and write. An important feature of this design is

that the stream data is not communicated via RPC!,

but by the underlying transport-specific communica-

tion. This facility is analogous to the remote pipes

of DCE RPC [17], but with a critical difference: the

streams we pass are not limited in scope to the du-

ration of the RPC call. When we marshal a stream

from process A to process B, process B acquires a

surrogate stream attached to the same data as the

original stream. In process B the surrogate stream

can be used at will, long after the call that passed it

is finished. In contrast, in a scheme such as the pipes

provided in DCE, the data in the pipe must be com-

municated in its entirety at the time of the RPC call

(and at a particular point in the call too). Our fa-

cility is also analogous to the i-emote pipes of Gifford

and Glasser [8], but is simpler and more transparent.

We also provide network-wide reference-counting

garbage collection.

2 Related work

We have built closely on the ideas of Emerald [10]

and SOS [19], and perhaps our main contribution has

been to select and simplify the most essential features

of these systems. An important simplification is that

our network objects are not mobile. However, pick-

les make it easy to transfer non-network objects by

copying, which offers some of the benefits of mobility

while avoiding the costs.

JVe also have used some of the ideas of the conven-

tional (non-object-oriented) DCE RPC system [17,

Part 2]. Network objects simultaneously generalize

DCE bindings and context handles.

Systems like Orca [2] and Amber [6] aim at us-

ing objects to obtain performance improvements on

a multiprocessor. We hope that our network object

design can be used in this way, but our main goal

was to provide reliable distributed services, and con-

sequently our system is quite different. For example,

the implementations of Orca and Amber described in

the literature require more homogeneity than we can

assume. (Rustan Leino has implemented a version of

Modula-3 network objects on the Caltech Mosaic, a

fine-grained mesh multiprocessor [1 1], but we will not

describe his work here.)

Systems like Argus [12, 13] and Arjuna [7] are like

network objects in that they aim to support the pro-

gramming of reliable distributed services; they dif-

fer by providing much larger building blocks, such as

stable state and multi-machine atomic transactions,

and are oriented to objects that are implemented by

whole address spaces. Our network objects are more

primitive and fine-grained.

The Spring subcontract is an intermediary between

a distributed application and the underlying object

runtime [9]. For example, switching the subcontract

can control whether objects are replicated. A deriva-

tive of this idea has been incorporated into the ob]ect

adaptor of the Common Object Request Broker Ar-

chitecture [16]. We haven’t aimed at such a flexible

structure, although our highly modular structure al-

lows playing some similar tricks, for example by build-

ing custom transports.

3 Definitions

A Modula-3 ob]ect is a reference to a data record

paired with a method suite. The method suite is

a record of procedures that accept the object itself

as a first parameter. A new object type can be de-

fined as a subtype of an existing type, in which case

objects of the new type have all the methods of the

old type, and possibly new ones as well (inheritance).
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The subtype can also provide new implementations

for selected methods of the supertype (overriding).

Modula-3 objects are always references, and multiple

inheritance is not supported. A Modula-3 object in-

cludes a typecode that can be tested to determine its

type dynamically [14].

A network object is an object whose methods can

be invoked by other programs, in addition to the pro-

gram that allocated the object. The program invok-

ing the method is called the clzent and the program

containing the network object is called the owner.

The client and owner can be running on different ma-

chines or in different address spaces on the same ma-

chine.

To implement network objects, the reference in the

client program actually points to a surrogate ob]ect,

whose methods perform remote procedure calls to

the owner, where the corresponding method of the

owner’s object is invoked. The client program need

not know whether the method invocation is local or

remote.

The surrogate object’s type will be declared by a

stub generator rather than written by hand. This

type declaration includes the method overrides that

are analogous to a conventional client stub module.

There are three object types to keep in mind: the

network object type T at which the stub generator

is pointed; the surrogate type TSrg produced by the

stub generator, which is a subtype of T with method

overrides that perform RPC calls, and the type TImpl

of the real object allocated in the owner, also a sub-

type of T. The type T is required to be a pure object

type; that is, it declares methods only, no data fields.

The type TImpl generally extends T with appropriate

data fields.

If program A has a reference to a network object

owned by program B, then A can pass the reference to

a third program C, after which C can call the methods

of the object, just as if it had obtained the reference

directly from the owner B. This is called a third party

transfer. In most conventional RPC systems, third

party transfers are problematical; with network ob-

jects they work transparently, as we shall see.

For example, if a node offers many services, instead

of running all the servers it may run a daemon that

accepts a request and starts the appropriate server.

Some RPC systems have special semantics to sup-

port this arrangement, but third-party transfers are

all that is needed: the daemon can return to the client

an object owned by the server it has started; subse-

quent calls by the client will be executed in the server.

When a client first receives a reference to a given

network object, either from the owner or from a third

party, an appropriate surrogate is created by the un-

marshaling code. Care is required on several counts.

First, different nodes in the network may use dif-

ferent underlying communications methods (so-called

transports). To create the surrogate, the code in the

client must select a transport that is shared by the

client and owner—and this selection must be made in

the client before it has communicated with the owner.

Second, the type of the surrogate must be selected.

That is, we must determine the type TSrg corre-

sponding to the type TImpl of the real object in the

owner. But there can be more than one possible sur-

rogate type available in the client, since TSrg is not

uniquely determined by TImpl. As we shall see, this

situation arises quite commonly when new versions of

network interfaces are released. The ambiguity is re-

solved by the narroulest surrogate rule: the surrogate

will have the most specific type of all surrogate types

that are consistent with the type of the object in the

owner and for which stubs are available in the client

and in the owner. This rule is unambiguous because

Modula-3 has single inheritance only.

Since the type of the surrogate depends on what

stubs have been registered in the owner as well as in

the client, it is can’t be determined statically. A run-

time type test will almost always be necessary after

the surrogate is created. The test may be performed

by the application code (if, for example, the declared

return type is a generic network object, but the ex-

pected return type is more specific), by the stubs (if

the declared return type is specific), or by the generic

unpickling code (if a linked data structure includes

a field whose type is a specific subtype of network

object, the unpickler must check that the surrogate

produced is legal at that position in the data struc-

ture).

4 Examples

To make these ideas more concrete, we will present

some examples based on the following trivial interface

to a file service:

INTERFACE FS ;

IMPORT NetObj ;

TYPE

File = NetObj .T OBJECT METHODS

getChar( ) : CHAR;

eof ( ) : BOOLEAN

END ;

Server = NetObj . T OBJECT METHODS

open(name: TEXT) : File

END ;

END FS .
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(Translation from Modula-3: The interface above de-

clares object types FS. File, a suht ype of Net Ob j . T

extended with two methods, and FS. Server, a sub-

type of NetObj . T with one extra method. Any data

fields would go between OBJECT and METHODS, but

these types are pure. It is conventional to name the

principal type in an interface T; thus NetObj . T is the

principal type in the NetObj interface.)

In our design, all network objects are subtypes

of the type Net Obj . T. Thus the interface above de-

fines two network object types, one for opening files,

the other for reading them. If the stub generator is

pointed at the interface FS, it produces a module con-

taining client and server stubs for both types.

Here is a sketch of an implementation:

MODULE Server EXPORTS Maim;

IMPORT NetObj , FS, Time;

TYPE

File = FS. File OBJECT

<buff ers, etc. >

OVERRIDES

get Char : = GetChar;

eof : = Eof

END ;

Svr = FS. Server OBJECT

<directory cache, etc. >

OVERRIDES

open := Open

END ;

< Code for Get Char, Eof , and Open >

BEGIN

NetObj.Export(NEW(Svr), “FSI”);

< Pause indefinitely >

END Server.

The call NetObj.Export(obj, nm) exports the net-

work object obj; that is, it places a reference to it

in a table under the name nm, whence clients can re-

trieve it. The table istypically contained inan agent

process running on the same machine as the server.

Here is a client, which assumes that the server is

running on a machine named server:

MODULE Client EXPORTS Main;

IMPORT NetObj, FS, IO;

VAR

s: FS.Server :=

NetObj.Import (“FSI”,

NetObj.LocateHost(’’server”) );

f := s.open(’’lusridictiwords”) ;

BEGIN

WHILE NOT f.eofo DO

IO.PutChar(f .getCharo )

END

END Client.

The call NetObj.LocateHost(nm) returns a handle

on the agent process running on the machine named

nm. The call to NetObj.Import returns the network

object storedin the agent’s table under the name FSI;

in our example this will be the Svr object exported

by the server. Import, Export, and LocateHost are

described further in the section below on bootstrap-

ping.

The client program makes the remote method calls

s.open(. . . ), f.getcharo,a ndf.eofo.” The net-

work object s was exported by name, using the agent

running on the machine server. But the object f is

anonymous; that is, it is not present in any agent

table. The vast majority of network objects are

anonymous; only those representing major services

are named.

For comparison, here is the same functionality as

it would be implemented with non-object-oriented

RPC. The interface would define a file as an opaque

type:

INTERFACE FS;

TYPE T;

PROC Open(n: TEXT): T;

PROC GetChar(f: T): CHAR;

PROC Eof(f: T): BOOL;

END FS.

Aconventional RPC stub generator would transform

this interface into a client stub, a server stub, and a

modified client interface containing explicit binding

handles:

INTERFACE FSClient;

IMPORT FS;

TYPE Binding;

PROC

Import(hostName: TEXT): Binding;

Open(b: Binding, n: TEXT): FS.T;

GetChar(b: B~nd~ng, f: FS.T): CHAR;

Eof(b: Binding, f: FS.T): BOOL;

END FSClient

The server would implement the FS interface and

the client would use the FSClient interface. In

FSClient, the type Binding represents a handle on

a server exporting the FS interface, and the type T

represents a so-called conted handle on an open file
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in one of these servers. Here is the same client com-

putation coded using the conventional version:

MODULE

IMPORT

VAR

b :=

f. .=

BEGIN

Client;

FSClient, IO;

FSClient. Import (“server”) ;

FSClient .Open(b,

“/usr/diet/words” );

WHILE NOT FSClient.Eof(b, f) DO

IO.PutChar(FSClient.GetChar(b, f))

END

END Client.

Comparing the two versions, we see that the network

object s plays therole of the bindingb, and the net-

work object f plays the role of the context handlef.

Network objects subsume the two notions of binding

and context handle.

In the conventional version, the signatures oft,he

procedures in FSClient differ from those inFS, be-

cause the binding must be passed. Thust hesignature

is different forlocal and remote calls. (In this example

DCE RPC could infer the binding from the context

handle, allowing the signatures to be preserved; but

the DCE programmer must be aware of both notions.)

Moreover, although conventional systems tend to al-

low bindings to be communicated freely, they don’t

do the same for context handles: It is an error (which

the system must detect) to pass a context handle to

any server but the one that created it.

The conventional version becomes even more awk-

ward when the same address space is both a client

and a server of the same interface. In our FS example,

for example, a server address space must instantiate

the opaque type FS. T to a concrete type containing

the buffers and other data representing an open file.

On the other hand, a client address space must in-

stantiate the opaque type FS. T to a concrete type

representing a context handle (this type is declared

in the client stub module). These conflicting require-

ments make it difficult for a single address space to be

both a client and a server of the same interface. This

problem is called type clash. It can be finessed by

compromising on type safety; but the network object

solution avoids the problem neatly and safely.

Subtyping makes it easy to ship a new version of

the server that supports both old and new clients, at

least in the common case in which the only changes

are to add additional methods.

For example, suppose that we want to ship a new

file server in which the files have a new method called

close. First, we define the new type as an extension

of the old type:

TYPE

NewFS. File = FS .Fi.le OBJECT METHODS

closeo

END ;

Since an object of type NewFS. File includes all the

methods of an FS. File, the stub for a NewFS. File is

also a stub for an FS. File. When a new client—that

is, a client linked with stubs for the new type—opens

a file, it will get a surrogate of type NewFS. File,

and be able to invoke its close method. When an

old client opens a file, it will get a surrogate of type

FS. File, and will be able to invoke only its getChar

and eof methods. A new client dealing with an old

server must do a runtime type test to check the type

of its surrogate.

As a final example, a network object imported into

a program that has no stubs linked into it at all will

have type NetObj . T, since every program automat-

ically gets (empty) stubs for this type. You might

think that a surrogate of type NetObj . T is useless,

since it has no methods. But the surrogate can be

passed on to another program, where its type can be-

come more specific. For example, the agent process

that implements NetObj . Import and NetObj . Export

is a trivial one-page program containing a table of ob-

jects of type NetObj . T. The agent needs no informa-

tion about the actual subtypes of these objects, since

it doesn’t call their methods, it only passes them to

third parties.

5 Implementation

In this section we we will try to describe our system

in sufficient detail to guide anyone who might want

to reimplement it.

Assumptions. We implemented our system with

Modula-3 and Unix, but our design would work on

any system that provides threads, garbage collection,

and object types with single inheritance. At the next

level of detail, we need the following capabilities of

the underlying system:

1. object types with single inheritance and the abil-

ity to test the type of an object at runtime, to al-

locate an object given a code for its type, to find

the code for the direct supertype given the code

for the type, and to determine at runtime the

sizes and types of the fields of an object, given

the type of the object;
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2. threads (lightweight processes);

3. some form of inter-address space communication,

whether by reliable streams or unreliable data-

grams;

4. garbage collection together with a hook for call-

ing a cleanup routine when an object is garbage

collected (or explicitly freed);

5. a method of communicating object typecodes

from one address space to another; and finally,

6. object-oriented buffered streams.

We will elaborate on the last two items.

The numerical typecodes assigned by the compiler

and linker are unique within a given address space,

but not across address spaces. Compiler support is re-

quired to solve this problem. The Modula-3 compiler

computes a jingerprmt for every object type appear-

ing in the program being compiled. A fingerprint

is a sixty-four bit checksum with the property that

(with overwhelming probability) two types have the

same fingerprint only if they are structurally identi-

cal. Thus a fingerprint denotes a type in an address-

space independent way. Every address space contains

two tables mapping between its typecodes and the

equivalent fingerprint. To communicate a typecode

from one address space to another, the typecode is

converted into the corresponding fingerprint in the

sending address space and the fingerprint is converted

into the corresponding typecode in the receiving ad-

dress space. If the receiving program does not contain

a code for the type being sent, then the second table

lookup will fail.

A buffered stream is an object type in which the

method for filling the buffer (in the case of input

streams) or flushing the buffer (in the case of out-

put streams) can be overridden differently in different

subtypes. The representation of the buffer and the

protocol for invoking the flushing and filling methods

are common to all subtypes, so that generic facilities

can deal with buffered streams efficiently, indepen-

dently of where the bytes are coming from or going

to. To our knowledge these streams were first in-

vented by the designers of the 0S6 operating system

[22]. In Modula-3 they are called readers and wrzters,

and are described in Chapter 6 of [14].

Garbage collection. Our system includes network

wide reference counting garbage collection. For each

exported network object, the runtime records the set

of clients containing surrogates for the object (the

dzrty set). As long as this set is non-empty, the run-

time ret ains a pointer to the object. The retained

pointer protects the object from the owner’s garbage

collector, even if no local references to it remain.

When a surrogate is created, a procedure is registered

with the local garbage collector to be called when the

surrogate is collected. This procedure makes an RPC

call to the owner to remove itself from the dirty set.

When the dirty set becomes empty, the runtime dis-

cards the retained pointer, allowing the owner’s local

garbage collector to reclaim the object if no local ref-

erences remain.

This scheme will not garbage-collect cycles that

span address spaces. To avoid this storage leak, pro-

grammers are responsible for explicitly breaking cy-

cles that span address spaces.

If program A sends program B a reference to an ob-

ject owned by a third program C, and A then drops its

reference to the object, we must ensure that the dirty

call from B precedes the clean call from A, to avoid the

danger that the object at C will be prematurely col-

lected. This is not a problem if the object is sent as an

argument to a remote method call, since in this case

the calling thread retains a reference to the object on

its stack while it blocks waiting for the return mes-

sage, which cannot precede the unmarshaling of the

argument. But if the object is sent as a result rather

than an argument, the danger is real. Our solution is

to require an acknowledgment to any result message

that contains a network object: the dispatcher proce-

dure blocks waiting for the acknowledgment, with the

reference to the object on its stack, protected from its

garbage collector. This increases the message count

for method calls that return network objects, but it

doesn’t greatly increase the latency of such calls, since

the thread waiting for the acknowledgement is not on

the critical path.

By maintaining the set of clients containing sur-

rogates rather than a simple count, we are able to

remove clients from the dirty set when they exit or

crash. The mechanism for detecting that clients have

crashed is transport-specific, but for all reasonable

transports there is some danger that a network parti-

tion that prevents communication between the owner

and client will be mis-interpreted as a client crash.

In this case the owner’s object might be garbage

collected prematurely. The potential for this error

seems to be an unavoidable consequence of unrelia-

bility communication together with a desire to avoid

storage leaks in long-running servers. Because we

never reuse object IDs, we can detect this error if

it occurs.

Dirty calls are synchronous with surrogate creation,

but clean calls are performed in the background. If

a clean call fails, it will be attempted again. If a

dirty call fails, the client schedules the surrogate to
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be cleaned (since the dirty call might have added the

client to the dirty set before failing) and raises the

exception CallFailed. Clean and dirty calls carry

sequence numbers that are increasing from any client:

the owner ignores any clean or dirty call that is out of

sequence. This requires the owner to store a sequence

number for each entry in the dirty set, as well as a

sequence number for each client for which a call has

failed. The sequence numbers for clients that have

successfully removed themselves from the dirty set

can be discarded.

The companion paper [4] presents the details of the

collection algorithm and a proof of its correctness.

Transports. There are many protocols for commu-

nicating between address spaces (for example, TCP,

UDP, and shared memory), and many irksome differ-

ences between them. We insulate the main part of

the network object runtime from these differences via

an abstraction called a Transport. T.

A Transport. T is an object that generates and

manages connections between address spaces. Differ-

ent subtypes use different communication methods.

For example, a TGPTransport. T is a subtype that

uses TCP.

Each subtype is required to provide a way of nam-

ing address spaces. A transport-specific name for an

address space is called an endpoint. Endpoints are not

expected to be human-sensible. Naming conventions

ensure that an endpoint generated by one transport

subtype will be meaningful only to other instances of

the same subtype. (Some use the term “endpoint”

in a weaker sense, meaning little more than a port

number. For us, different instances of a program are

identified by different endpoints. )

If tr is a Transport. T and ep is an endpoint rec-

ognized by tr, then tr. f romEndpoint ( ep) returns

a Location (described in the next paragraph) that

generates connections to the space named by ep. If

tr doesn’t recognize ep, then tr. f romEndpoi.nt (ep )

returns NIL.

A Location is an object whose new method gener-

ates connections to a particular address space. When

a client has finished using a connection, it should pass

the connection to the free method of the location

that generated it. This allows transports to manage

their connections. If creating connections is expen-

sive, then the transport can cache them. If main-

taining idle connections is expensive, the transport

can close them. If both are expensive, as is often the

case, the transport can cache idle connections for a

limited amount of time.

(It is perfectly possible to implement a class of con-

nection that communicates with datagrams according

to a protocol that makes idle connections essentially

free—see [3]. That is, in spite of its name, the type

Connect ion need not be connection-oriented in the

standard sense of the word. )

A connection c contains a reader c. rd and a writer

c. r.m. Connections come in pairs; if c and d are

paired, whatever is written to c. wr can be read from

d. rd, and vice-versa. Ordinarily c and d will be in

different address spaces. Values are marshaled into a

connection’s writer and unmarshaled from a connec-

tion’s reader. Since readers and writers are buffered,

the marshaling code can treat them either as streams

of bytes (most convenient) or as streams of datagrams

(most efficient).

One of the two connections in a pair is the cheni

side and the other is the server side. Transports are

required to provide a thread that listens to the server

side of a connection and calls into the network object

runtime when a message arrives indicating the begin-

ning of a remote call. This is called dzspatchzng, and

is described further below.

A connection is required to provide a way of gener-

ating a “back connection”: the location c. 10C must

generate connections to the address space at the other

side of c. If c is a server-side connection, the con-

nections generated by c. 10C have the opposite direc-

tion as c; if c is a client-side connection, the connec-

tions generated by c. 10C have the same direction as

c.

Basic representations. The wire representation

for a network object is a pair ( sp, i) where sp is

a SpaceID (a number that identifies the owner of

the object) and i is an Obj ID (a number that dis-

tinguishes different objects with the same owner):

TYPE WireRep =

RECORD sp: SpaceID; i: Obj ID END;

Each address space maintains an ob~ect table obj tbl

that contains all its surrogates and all its network

objects for which any other space holds a surrogate:

VAR objtbl: WireRep -> NetObj . T;

(We use the notation A -> B for the type of a table

with domain type A and element type B. We will use

array notation for accessing the table, even though it

is implemented as a hash table. )

If a non-surrogate network object is present in the

object table, we say that it is exported; otherwise it is

unezported. The concrete representation of a network

object includes a state field that records whether the

network object is a surrogate, and, if not, whether the

object is exported:
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TYPE State =

{Surrogate, Exported, Unexported);

REVEAL

NetObj.T = OBJECT

state: State := Unexported;

wr: WireRep;

10C: Location;

disp: Dispatcher

END ;

TYPE Dispatcher =

PROC(C: Connection; o: NetObj.T)

(The REVEAL statements specifies the concrete repre-

sentation of the opaque type NetObj.T. The state

field is given a default value.)

If obj.state is Exported or Surrogate, then

obj.wr is the wire representation of the object.

If obj.state = Surrogate then obj.loc gener-

ates connections to the owner’s address space, and

obj.dispisunused. Ifobj.state = Exported, then

obj.disp is the dispatcher procedure for the ob-

ject, and obj.loc is unused. The dispatcher call

obj.disp(c, obj) unmarshals a method number

and arguments from c, calls the appropriate method

ofobj, and marshals and sends the result over c.

Remote invocation. To illustrate the steps in a

remote method invocationwe usethetype FS .Server

defined above, with asingle method open. Thecor-

responding stub-generated surrogate type declaration

looks like this:

SrgSvr = FS.Server OBJECT

OVERRIDES open := SrgOpen END;

SrgOpen(ob: SrgSvr; n: TEXT): FS.File =

VAR

c := ob.loc.newo;

res: FS.File;

BEGIN

MarshalNetObj(ob, c);

MarshalInt(O, c);

MarshalText(n, c);

Flush(c.wr);

res := UnmarshalNetObj (c);

ob,loc.free(c);

RETURN res

END ;

We take for granted procedures for marshaling ba-

sic types. Procedures for marshaling network objects

are described in the next subsection. The method is

identified on the wire by its index; the open method

has index zero. The code presented would crash

with a narrow fault if the network object returned

by UnmarshalNetObj were not of type FS.File (as

for example inappropriate stubs had not been linked

into the client or owner). The actual system would

raise an exception instead of crashing.

On the server side, the thread forked bythetrans-

port to service a connection c calls into the network

object runtime when it detects anincoming RPC call.

The procedure it calls executes code something like

this:

VAR

ob := UnmarshalNetObj (c);

BEGIN

ob.disp(c, ob)

END ;

The dispatcher procedures are typically written by

the stub generator. The dispatcher for FS.Server

would look something like this:

SvrDisp(c: Connection; o: FS.Server) =

VAR

methID := UnmarshalInt(c);

BEGIN

IF methID = O THEN

VAR

n := UnmarshalText(c);

res: FS.File;

BEGIN

res := o.open(n);

MarshalNetObj(res, c);

Flush(c.wr)

END

ELSE

< error, non-existent method >

END

END

The stubs have a narrow interface to the rest of

the system: they call the new and free methods of

Locations to obtain and release connections, and

they register their surrogate types and dispatcher

procedures where the runtime can find them, in the

global table stubs:

TYPE StubRec =

RECORD

srgType: TypeCode;

di.sp: Dispatcher

END ;

VAR stubs: Typecode –> StubRec;

An address space has stubs forte if and only iftc

is in the domain of stubs. Iftc is in the domain

of stubs, then stubs[tc] .srgType is the typecode

for the surrogate type forte, and stubs[tc].disp is

the owner dispatcher procedure for handling callsto

objects of type t c.
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A stub module that declares a surrogate type srgTC

and dispatcher disp for a network object type tc

also sets stubs [tc] := (srgTC, disp). The net-

work object runtime automatically registers a surro-

gate type and null dispatcher for the type NetObj . T.

(In the actual system the stubs table is indexed by

stub protocol version as well as type code, to make

it easy for a program to support multiple protocol

versions. )

Marshaling network objects. The procedure

call MarshalNetOb j ( ob j , c ) writes to the connec-

tion c the wire representation of the reference obj:

MarshalNetObj (obj : NetObj . T,

c: Connection) =

IF obj = NIL THEN

MarshalInt(-1, c);

MarshalInt(-1, c)

ELSE

IF obj.state = Unexported THEN

VAR

i := NewObjID();

BEGIN

obj . wr := (SelfID(), i);

objtbl[(obj.wr. sp, i)] := obj;

obj.type := Exported;

obj.disp :=

Dispatcher(TYPECODE(obj ))

END

END ;

MarshalInt(obj .wr.sp, c);

MarshalInt(obj .wr.i, c)

END

Dispatcher: Dispatcher =

WHILE NOT tc IN domai.n(stubs) DO

tc := Supertype(tc)

END ;

RETURN stubs[tc].disp

In the above we assume that NewObjID() returns an

unused object ID, that SelfID () returns the SpaceID

of the caller, and that Supertype(tc) returns the

code for the supertype of the type whose code is tc.

The corresponding callUnmarshalNetObj (c)reads

a wire representation from the connection c and re-

turns the corresponding network object reference:

UnmarshalNetObj (c: Connection)

: NetObj.T =

VAR

SP := UnmarshalInt( c);

i := UnmarshalInt(c);

wrep := (sp,i);

BEGIN

IF Sp = -1 THEN

RETURN NIL

ELSIF objtbl[wrep] # NIL THEN

RETURN objtbl[wrep]

ELSE

RETURN NewSurrogate(sp, i, c)

END

END ;

The call NewSurrogate(sp, i, c) creates a surro-

gate for the network object whose wire representation

is (sp, i), assuming that cisaconnection toan ad-

dress space that knows sp. (We say that an address

space spI knows an address space sp2 ifspi=sp2 or

ifspi contains some surrogate owned by sp2.)

NewSurrogate locates the owner, determines the

typecode of the surrogate, and enters itin the object

table:

NewSurrogate(sp: SpaceID,

i: ObjID,

c: Connection): NetObj.T =

VAR

10C := Locate(sp, corm);

tc := ChooseTypeCode(loc, 1);

res := Allocate;

BEGIN

res.wr := (sp, i);

res.state := Surrogate;

objtbl[(sp, i)] := res;

RETURN res

END

The call Locate(sp, c) returns a Location that

generates connectionsto sp, or raises CallFailedif

this is impossible. It requires that c be a connection

to an address space that knows about sp. The call

ChooseTypeCode(loc, i) returns the code for the

calling address space’s surrogate type for the object

whose IDisi andowner is the address space to which

10C generates connections. The call Allocate

allocates an object with type code tc.

To implement Locate without resorting to broad-

cast, each address space maintains information about

its own transports and the endpoints of the address

spaces it knows about:

VAR tr: SEQITransport.T];

the sequence of transports available in this space,

decreasing order of desirability.

VAR names: SpaceID -> SEQIEndpoint]

names[sp] is the sequence of endpoints for Sp

recognized by sp’s transports.

(Wewrite SEQ[T] to denote the type ofsequences

elements of type T.)

in

of
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The tr sequence is filled in at initialization time,

with one entry for each transport linked into the pro-

gram, and is constant thereafter.

The fast path through Locate finds an entry for sp

in names; this entry is the list of names for sp recog-

nized by sp’s transports. These names are presented

to the transports tr available in this space; if one is

recognized, a common transport has been found; if

none is recognized, there is no common transport.

The first time an address space receives a reference

to an object owned by sp, there will be no entry for

sp in the space’s name table. In this case, Locate

obtains the name sequence for sp by making an RPC

call to the address space from which it received the

reference into sp. This is our first example of an RPC

call that is nested inside an unmarshaling routine; we

will use the notation RPC (c, P (args ) ) to indicate an

RPC call to P ( args ) performed over the connection

c. Here is the implementation of Locate:

Locate (sp:SpaceID,

c: Connection) : Location =

IF NOT sp IN domain (names ) THEN

VAR

backc := c.loc. newo;

BEGIN

names [sp] : =

RPC(backc, GetNames(sp) ) ;

c.loc. free (backc)

END

END ;

VAR nm : = names [spl ; BEGIN

FOR i := O TO LAST(tr) DO

FOR j : = O TO LAST(nm) DO

VAR 10C :=

tr[i] .fromEndpoint (nm[j] ) ;

BEGIN

IF 10C # NIL THEN

RETURN 10 C

END

END

END

END ;

RAISE CallFai.led

END

GetNames(sp) = RETURN names [sp]

Placing the i loop outside the j loop gives priority

to the client’s transport preference over the owner’s

transport preference. Thechoice isarbltrary: usually

the only point of transport preference is to obtain a

shared memory transport if one is available, and this

will happen whichever loop is outside.

The only remaining procedure is Choos eTypeCode,

which must implement the narrowest surrogate rule.

According to this rule, the surrogate type depends on

which stubs have been registered in the client and in

the owner: it must determine the narrowest super-

type for which both client and owner have a regis-

tered stub. This requires a call to the owner at sur-

rogate creation time, which we combine with the call

required by the garbage collector: the call Dirty ( i,

sp) adds sp to the dirty set for object number i and

returns the supertypes of the object’s type for which

stubs are registered.

Dirty (i: Obj ID,

sp: SpaceID) : SEQ [Fingerprint] =

VAR

tc := TYPE(objtbl [( Self ID(), i)]);

res: SEQ [Fingerprint] := empty;

BEGIN

< Add sp to i’s dirty set >;

WHILE NOT t c IN domain (stubs ) DO

tc := Supertype(tc)

END ;

LOOP

res. addhi(TCToFP(tc) ) ;

IF tc = TYPECODE(NetObj. T) THEN

EXIT

END ;

tc := Supertype(tc)

END ;

RETURN res

END

ChooseTypeCode (loc, i) =

VAR fp: SEQ[Fingerprint]; BEGIN

VAR C := loc. newo; BEGIN

fp := RPC(C, Dirty (i, Self ID()));

loc. free(c)

END

BEGIN

FOR j := O TO LAST(fp) DO

IF FPToTC(fp[j]) IN domain (stubs)

THEN RETURN

stubs (FPToTC(fp[j] ) ) . srgType

END

END

END

In the above we assume that TCTOFP and FPToTC con-

vert between equivalent typecodes and fingerprints

and that s. addhi(x) extends the sequence s with

the new element x.

This concludes our description of the algorithms for

marshaling network objects. Wehaveomittedanum-

ber of details. Forexample, toavoid cluttering up the

program, we have ignored synchronization; the real

program must protect the various global tables with

locks. Some care isrequired toavoid deadlock; forex-

ample, it is not attractive to hold a lock all the way
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through a call to NewSurrogat e, Instead, we make an

entry in the surrogate table at the beginning of the

procedure, recording that a surrogate is under con-

struction, and do not reacquire the table lock again

until the end of the sequence> when the surrogate has

been fully constructed. A thread that encounters a

surrogate under construction simply waits for it to

be constructed. We have also omitted the code for

relaying exceptions raised in the owner to the client,

and for relaying thread alerts from the client to the

owner.

Marshaling streams. The marshaling of readers

and writers is very similar; to be definite, consider a

reader rd. The sending process has a concrete reader

rd in hand. The marshaling code must create a surro-

gate reader rdsrg in the receiving process, such that

rdsrg delivers the contents of rd. The general strat-

egy is to allocate a connection between the sender

and receiver, allocate rdsrg in the receiver so that

it reads from the connection, and fork a thread in

the sender that reads buffers from rd and sends them

over the connection. (The thread could be avoided

by doing an RPC to fill the buffer of rdsrg whenever

it is empty, but this would increase the per-buffer

overhead of the cross-address space stream. ) For the

detailed strategy we explored two designs.

In the first design, the sender creates a back con-

nection newt : = c .loc. newo, where c is the con-

nection over which rd is being marshaled, chooses a

unique ID, sends the ID over newt, sends the ID over

c as the wire representation of rd, and forks a thread

that copies data from rd into newt. In the receiving

process, two threads are involved. The thread servic-

ing the connection newt reads the ID (distinguishing

it from an incoming call message) and places the con-

nection in a table with the ID as key. The thread un-

marshaling the reader looks up the connection in the

table and allocates the surrogate reader rdsrg using

that connection. This seems simple, but the details

became rather complicated, for example because of

the difficulty of freeing connections in the table when

calls fail at inopportune times.

The second design employs a network object called

a Voucher with a method claim that returns a reader.

Vouchers have nonstandard surrogates and dispatch-

ers registered for them, but are otherwise ordinary

network objects.

To marshal rd, the sending process allocates a

voucher v with a data field . rd of type reader, sets

v.rd : = rd, and calls MarshalObj ect (v). When the

receiving process unmarshals a network object and

finds it is a surrogate reader voucher vsrg, it calls

vsrg. claim ( ) and returns the resulting reader.

The claim method of a surrogate voucher vsrg

begins with newt : = vsrg. 10C. new( ) and marshals

vsrg to newt (just like an ordinary surrogate method

call). But then, instead of sending arguments and

waiting for a result, it allocates and returns the sur-

rogate reader rdsrg, giving it the connection newt as

a source of data.

On the server side, the voucher dispatcher is called

by a transport-supplied thread, just as for an ordinary

incoming call. The arguments to the dispatcher are

the server side of the connection newt and the voucher

vsrg containing the original reader vsrg. rd. The dis-

patcher procedure plays the role of the forked thread

in the first design: it reads buffers from vsrg. rd and

sends them over newt.

The second design relies on the transport to pro-

vide the required connection and thread, and relies

on the ordinary network object marshaling machin-

ery to connect the surrogate voucher with the original

reader. This makes the protocol simple, but it costs

three messages (a round trip for the dirty call for the

voucher; then another message to launch the voucher

dispatcher). It would be easy enough to avoid the all-

but-useless dirty call by dedicating a bit in the wire

representation to identify vouchers, but perhaps not

so easy to stomach the change. By contrast the first

design uses only one message (to communicate the

ID from the sender to the receiver), and this message

could perhaps be piggybacked with the first buffer of

data.

We implemented the second design, since (1) it

is trivial to implement, (2) given that cross-address

space streams are intended for bulk data transfer, it

is not clear how important the extra messages are;

and (3) if experience leads us to get rid of the extra

messages, it is not obvious whether to choose the first

design or to optimize the second.

Pickling and marshaling. The default behavior

of the pickle package isn’t satisfactory for all types.

Most often this arises because the concrete represen-

tation of an abstract type (e.g. a mutex or stream)

isn’t the appropriate way to communicate the value

between address spaces. To deal with this, the pickle

package permits clients to specify custom procedures

for pickling (and therefore for marshaling) particular

data types. Typically the implementor of an abstract

data type would specify such a custom procedure if

the type’s values weren’t transferable by straightfor-

ward copying. The details of this mechanism are be-

yond the scope of the present paper.

Programmers appreciate the narrowest surrogate

rule, and more than one has asked for comparable

flexibility in the case of ordinary objects. (If an at-
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tempt is made to unpiclde an ordinary object into a

program that does not contain the type of the ob-

ject, an exception is raised.) But in this case liberal-

ity seems unsound. Suppose type AB is derived from

A, and that we contrive to send a copy (rather than

a reference) of an object of type AB into a program

that knows the type A but not the type AB, either by

ignoring the B data fields and methods, or by some-

how holding them in reserve. In either case, the new

program may operate on the A part of the state, ei-

ther directly or by calling methods of A. But there

is no reason to imagine that these operations will be

valid, since the original type AB may have overrid-

den some of the methods of A; for example in order

to accommodate a change in the meaning of the rep-

resentation of the A fields. The narrowest surrogate

rule seems sound only when objects are transmitted

by reference.

The rule that network objects are always transmit-

ted by reference applies to marshaling only. In other

situations it is important to be able to pickle net-

work objects by copying; for example, when writing

a checkpoint to a disk file. To accommodate this need,

the procedures registered for pickling and unpickling

network objects perform a runtime test of the type of

their stream argument; if the stream is of the distin-

guished subtype declared in the transport interface,

then they use the marshaling algorithms described

above; otherwise they copy the data fields, as for an

ordinary object.

Bootstrapping. The mechanisms described so far

produce surrogate network objects only as a result of

method calls on other surrogate network objects. We

have as yet no way to forge an original surrogate.

To do this we need the ingredients of a surrogate

object: a Location, an object ID, and a surrogate

type. To make it possible to forge the object ID and

type, we adopt the following convention: every pro-

gram into which network objects are linked owns a

spectal ob]eci with ID O, of a known type, provided

by the network object runtime. The methods of the

special object implement the operations required by

the network object runtime (reporting in clean and

dirty, GetNames, etc.). The special object also has

get and put methods implementing a table of named

network objects. At initialization time the network

object runtime allocates a special object and exports

it under ID O.

All that remains to forge an original surrogate is

to obtain a Location valid for some other program

into which network objects have been linked. Funda-

mentally, the only way to obtain a Location is to call

some transport’s fromEndpoint method—that is, the

program forging the surrogate must know an address

where something is listening. For this step the appli-

cation has two choices. We provide a network object

agent that listens at a well-known TCP port; thus a

surrogate for the agent’s special object can be forged

given the 1P name of the node on which it is running.

If every node runs the agent from its start-up script,

then no other well-known ports are needed: applica-

tions can export their objects by putting them in the

table managed by the agent’s special object, and their

clients can get them from the same table. If the appli-

cation writer prefers not to rely on the agent, he can

choose his own transport and well-known port, wire

it into his application, configure his program to listen

at that port and to forge surrogates for the special

objects at that port.

The procedure Lo cat eHost (rid), which appeared

in our example earlier, simply forges a surrogate for

the special object of the agent on the node nd, and

the procedures Import and Export use the table in

that object.

6 Numbers

Our system was designed and implemented in a year

by the four authors. The network object runtime is

4000 lines, the stub generator 3000 lines, the TCP

transport 1500 lines, the pickle package 750 lines, and

the network object agent 100 lines. All the code is in

Modula-3. Some performance numbers are:

Null call 3310 usecs/call

Ten integer call 3435 usecs/call

Same object argument 3895 usecs/call

Same object return 4290 usecs/call

New object argument 9148 usecs/call

Nev object return 10253 usecs/call

Reader test 2824 KBytes/sec

Writer test 2830 KBytes/sec

These numbers were taken using Digital worksta-

tions equipped with MIPS R3000 processors (25 Spec-

marks) running Ultrix, equipped with a 100 megabit

AN 1 network [20]. On this configuration, it takes

1600 usecs for a C program to echo a TCP packet from

user space to user space. The remaining 1710 usecs

for the null call is spent in two Modula-3 user space

context switches (which together add some 235 usecs

of latency to the null call) plus the cost of marshal-

ing and unmarshaling the object whose null method

is being called. The ten integer call test shows that

the incremental cost of an integer argument is about

12 usecs. The first “same object” test shows that

the incremental cost of a network object parameter
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that does not lead to a dirty call is 585 usecs; the

second shows that if the object is a return value in-

stead of an argument, the incremental cost is 880

usecs. This extra cost reflects the acknowledgement

that must be sent when the result message contains

a network object. The “new object” tests determine

the overhead of network object arguments and results

for which dirty calls have to be made; they are much

higher. The last two lines give the thoughput of net-

work streams. For comparison, the thoughput of a

raw T(3P stream using a C program is about 3400

KBytes/see; the difference is largely the cost of the

Modula-3 user space thread switch required for net-

work streams. (Neither raw TC,P connections nor our

streams built over them succeed in using much of the

100 megabits supplied by the network, for reasons

that are outside the scope of this paper.)

The purpose of our project was to find an attrac-

tive design, not to optimize performance, and our

numbers reflect, this. (They also reflect the costs of

Modula-3 runtime checks and the fact that the native

code Modula-3 compiler is still in alpha test. ) We are

confident that the techniques that have made RPC

systems fast (at least in research laboratories) could

be applied effectively to our system.

7 Experience

Our system has been working for a few months. Sev-

eral projects are building on the system; the most sig-

nificant completed projects are the packagetool and

the siphon.

The packagetool allows soft,ware packages to be

checked in and out from a repository implemented as

a directory in a distributed file system. The reposi-

tory is replicated for availability. When a new version

of a package is checked in, it is immediately visible to

all programmers using the local area network. All the

files in the new version become visible simultaneously.

The siphon is used to link repositories that are too

far apart to be served by the same distributed file sys-

tem (in our case, the two repositories of interest are

9000 miles apart). When a new version of a package

is checked in at one repository, the siphon will copy

it to the other repository within a few hours. Again,

all new versions of files in a single package become

visible simultaneously.

The previous version of the siphon was coded with

conventional RPC. The new version with network ob-

jects is distinctly simpler, for several reasons.

First, pickles and network streams simplified the

interfaces. For example, to fetch a package, the old

siphon enumerated the elements of the directory by

repeated RPC calls; the new siphon obtains a linked

structure of directory elements in one call. Also, the

old siphon used multiple threads copying large buffers

of data to send large files; the new siphon uses a net-

work stream.

Second, third-party transfers eliminated an inter-

face. The previous version of the siphon would pull

a new version of a package from one of the source

replicas, push it over the wide area network to a part-

ner siphon at the other site, which would cache it on

its disk and then push it to each of the destination

replicas. Thus both a pull and a push interface were

required. The new siphon transfers the object im-

plementing the pull interface to its remote partner,

which then pulls the files from the source replica di-

rectly. Thus the push interface was eliminated.

Third, although we have not done so yet, we ex-

pect to take advantage of the ability to easily plug

new transports into the system. We would like to use

data compression to reduce the number of bytes sent

over the wide area network. We plan to do this by

providing a subtype of Transport. T that automat-

ically compresses and decompresses data. Thus the

compression code will be moved out of the application

and into a library where it can easily be reused.

8 Conclusions

Our system is simple to use and to implement, be-

cause objects have eliminated many of the fussy de-

tails about bindings, subtyping allows for interface

evolution, there is a clean interface between the trans-

ports and the runtime proper, and pickles have elim-

inated many of the restrictions about what can be

marshaled.

The performance of our system is already adequate

for many purposes. It is competitive with the perfor-

mance of commercially available RPC systems [17],

and we believe our measurements indicate that, our

design does not prevent the sort of improvements that

result in the RPC performance levels reported by var-

ious research groups [21], [23].
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