
Abstract 

Storage Management for ALGOL68 

A. ~. Eirrel! 

This paper describes some of the 
techniques which can be used for managing the 
run time storage required for an ALGOL68 
program. The emphasis is on stack storage, 
since garbage collection techniques would 
require another paper. The Frcblems caused by 
some ALGOL68 constructs are described: the 
solutions given are mainly those adopted in 
the Cambridge ALGOL68C system. 

1 Representation of objects. 

ALGOL68 is a language concerned with internal objects and 
operations upon them. In designing the storage management for 
ALGOL68 one of the first questions tc he faced is how to 
represent these objects. In other words, when a value of some 
mode (data type) is assigned, or yielded, what bit patterns are 
physically moved around the store of the machine. 

For some modes, the choice of representation is 
straightforward : 

int => appropriate (machine-dependent) bit pattern- 
typically a single word. 

char => single byte (if possible). 

real => floating point numker. 

Other modes can be built out of simpler parts: 

struct(...) :> concatenation of the fields, pcssibly 
with gaps for boundary alignment. 

union(...) => (marker, value) 

routine => (entry address, envircnment pointer) 

Note that although the AIGCi68 report does not talk of values 
of mode union (...), a value which has ~een united is universally 
represented as the value with a small marker indicating its mcde. 
The 'environment pointer' in a routine is used in addressing 
items in blocks outside the routine - this is ccnsidered later. 

It should be pointed out here that it is possible to achieve 
considerable simplification of many of our problems by an 
indirection. By representing values of the more complicated 
modes by a pointer to data in a global stcrage area, the whole 
stack organization is simplified; this substitutes the problems 

82 



of managing the global storage area for the problems described 
below. I believe such a technique has been adopted in the 
Carnegie-Mellon implementation of AIGOI68S. 

The representation of multiple values is a cause of many 
problems. There are several causes. Firstly, we must always 
know the bounds of an array (multiple value), so that we can 
generate code to copy the array, and for array bound checking. 
Often, situations arise such that we cannot know these bounds at 
compile time and so must store them as part of the run time 
representation. Secondly, the facility of trimming a multiple 
value allows the program to manipulate sub-arrays. Unless we 
copy the elements of an array when we trim (which seems 
needlessly expensive), we must store separately £rom the elements 
a block containing the bounds of, and a peinter to, the elements. 
Thirdly, when subscripting an array we require a uniform distance 
between the addresses of the elements. When the elements are 
themselves arrays, we must 6arefully consider how tc achieve 
this. 

For example : / 
f 

[ ][ ]int v~ ( [ lint_ x= (1,2) 

\ y= (1,2,3), 
z= |I,2,3,4) ; 

I, (x,y,z) 

We require t h a t  t 

All these requirement~ 
containing bounds and) a pointer to the elements. 

J 

(address for v[ 1 ]) - (address  for  v[ 2]) 
(address for v[2]) - (address  fc r  v[3]) 

can be satisfied by using a descriptor 
~hus: 

, >L1i3i, i 

I . 

Additionally, the descriptor centains a _stride for each 
dimension, to indicate the spacing tetween elements. For 
example, if we have 

[,, ]int w = ( ...... ) ; 
[,]int p = w[,1,]; 

83 



then the representations of 'w' and 'F' are: 

strides 

0 10 11 100 10 1 

p[1,1 1,2] .... .... Ip[2, I 2,2] .... 

strides 

A final step in the representation of such objects is usually 
that the pointer, instead of being the address of the first 
physical element, is the address which would be that of the 
element whose subscript is 0 in each dimension, even if this is 
not physically part of the array (or even a legal address). ~his 
simplifies subscripting, since the com~utation no longer invalves 
the bounds (unless for checking purFoses). 

Thus in general objects involving array elements can be 
complicated tree structures. When such an object is assigned, or 
storage for it is generated, we must generate code to manage such 
tree structures. Innocuous looking declarations or assignments 
can generate considerable tracts of code, and the presence of 
such objects is the major reason fcr comFlexity in cur stack 
management. In future we will term the first level of such an 
object the static part of the object (its size is known at 
compile time); the remainder of the o£ject is the dynamic part 
(its size may not be known until run time). 

The representation of names, that is objects whose mode is of 
the form ref amode, is mainly straightforward - the address cf an 
.amode object. However, a complication arises if ~ode is of the 
form [... ]bmode. This complication is caused by trimming: the 
scope of the name yielded by trimming is the same as that cf the 
name being trimmed. Thus the descriptor produced can 

be required to exist longer than the block in which the trimming 
occurs, and so cannot be allocated cn the present stack frame. 
For example 

[1:10] ref[ ] int v; 
[ 1:20] Ant w. 
for i t_oo 10 do int j; ... ; v[i]:=w[i:i+10 at i] o__dd; 

Here, the descriptors for the arrays referred tc by the 
elements of 'w' are created when trimming 'w. inside the icoF, 
but their storage cannot he allocated at this pcint. For this 
reason, when allocating store for an object whose mode is cf the 

84 



form ref[ .... ]~_~9_~, we also allocate store fcr a descriptcr. 
For example the declaration of 'v' allocates store for 10 extra 
descriFtors. An immediate optimisation is to represent such 
names as the descriptor, rather than its address. For example, 

v = [r 11 "1o! ,4  ! 

h :  ~ . i )  : ~ i 3  " " ' , , 

L . . . . . .  [ , ~ l e , , ~o ts  o~ ' , , '  

t 
, , =  l ' i ~ i ~ o ;  i 

Note that this causes the implementor some tedium, since 
ref[...]bmode must always be handled as a special case. It alsc 
causes minor complications in handling identity relaticns for 
objects of such modes. 

The stack 

The stack organisation we will develop is based on the 
conventional ALGOL60 stack, which is summarised here. 

The stack consists of a number ef frames, one fcr each blcck 
which has been entered but has not yet terminated. 

At any time there is a current display. A display consists 
of a number of display reqisterS (or levels), each containing the 
address of some frame. The current display consists of registers 
addressing the current and each textually enclosing block. 

To access a word of the stack, we use an address of the form 

[display register] + offset 

where the display register (hut not its contents) and the offset 
are known at compile time. 

Due to recursion, there may he more than on~ frame for each 
block. 

On entry to a block, a new frame is started and an extra 
display register added to the display in order to address the 
frame. 

On entry to a procedure, the complete display is reset tc 
correspond to the block in which the ~rocedure (not the call) 
occurred. To allow this operation, the representation of a 

85 



routine value contains an environment pointer indicating the 
values to load as the new display. ~_his routine value is kncwn 
as a closure; due to recursion, there may be different closures 
for a single routine text• 

On exit from a block or procedure, the display is restcred tc 
its previous value• 

In ALGOL68, there are several categories of data we wish tc 
store on the stack. 

a) A heading containing the address cf the previous frame, 
subroutine link, information for setting up the display, etc. 

b) values for definitions: for '.int i' the value referred tc, 
for 'rea I x = random' the value itself. 

c) anonymous results created during elaboration cf the bleck. 

d) array elements 

e) storage for explicit loc generatczs. 

Of these (a), (b) and (c) are straightfcrward, but (d) and 
(e) are difficult since the amount of storage required may be 
large and may not be known at compile time• 

It is common practice to store (a), (b), (c) at the start ef 
the frame, with (d) and (@) at the end. This has two advantages: 
the offsets written in instructions are smaller (Many machines 
place severe limitations on such offsets), and we always know the 
offsets for identifiers at compile time. We can thus consider 
each frame as being divided into a static frame containing (a), 
(b), (c), and a dynamic frame (possibly empty) ccntaining (d) and 
(e). Further, it is convenient to treat (c) separately as the 
SWOST (static working stack) frame, calling the remainder cf the 
static frame the static idf ~rame. Similarly, w-~ can sub-divide 
the dynamic frame into the EWOST frame containing the dynamic 
parts of SWOST objects, and the dynamic idf frame. For example: 

begin 
int p, g, r, [ ]:3]ref int s: 
for i t__oo 3 ~o s[ i] := loc int od: 

(p,q,r) #row display# 

.end 

86 



I < ......... static frame >J< ..... dynamics:frame ....... > 

I 1 
i<- static idf frame ->l<--SWCST->i<---dynamic ~df--->l<-D~OSI-> 
i I frame I frame I frame 

I J 
I 

11'31 
I , 

I 
adin 3 

_: l 
p q r s 

I I 

i I 
! ! 

display register for 
this frame 

.descriptor ' elements I loc elements 
I - ! I 
:for (p,q,r); of 's' ~enerators: of (p,q,r) 

Management of the static frames is mainly straightforward. 
Storage is allocated on the static idf frame only at definitions. 
The structure of the language is such that at a definition, none 
of the anonymous results which have been created in the cnrrent 
block still exist, so the SWOST part of the frame is empty. ~hus 
the static idf frame is contiguous storage starting at the end of 
the heading area. The SWOST, then, is always placed at the end 
of the static idf frame. However, situations can arise which 
produce holes in the SWOST; these are typically, when we are 
constrained to produce the result of some action without 
overwriting its parameters. ~n example might be: 

compl w := ..., z := .. ; 

o,. W ~ Z ....~ 

w z store for 
W ~ Z 

It is always possible to avoid such holes by coFyinq, and 
with sufficient care most holes can he avoided without copying. 
In ALGOL68C, we decided that the extra expense cf allowing the 
holes was not great enough to justify the complexity (or expense, 
if we copy) of avoiding them. Accordin~gly, holes are allowed tc 
occur on SWOST; however since SWCSY for a block is always empty 
at a semicolon and before a definition, such holes are generally 
of short duration. It should he noted that all static feaze 
offsets are known at compile time. No run time management is 
required. 

Before considering the management of dynamic frames, we 
should look at an optimisation available to us. Within [~ single 
procedure, we know at compile time all the offsets inside each 

87 



static frame. If, then, we place all static frames ~irst, 
followed by the dynamic frames, we will be able to address all 
the static frames with a single display register, pointing to the 
base of the first static frame. This optimisation is often 
described as having one frame per procedure, hut this is not 
really an accurate description. In terms of when store is 
allocated and recovered, and in the interleaving of static idf 
frames with S~OST, we are still running one frame per block, lhe 
only alteration is to omit some display registers, and move the 
dynamic frames. The dynamic frames are still, in every sense, 
one per block. This optimisation gives us several gains. ~he 
number of display levels is drastically reduced, being limited to 
the textual nesting depth of procedures- in practice, we have 
never encountered depths greater than 5, although ALGOL68C allows 
for 6,. The number of display registers required is in fact less 
than the textual nesting depth, since if an enclosing frame is 
not referenced from inside a procedure, it can be omitted from 
the display. (This is allowed by, and required by, the rules cn 
the scope of routine values.) It is possible, instead of keeping 
the complete display, to keep only a pointer to the static frames 
of the current procedure, and store there a pointer to the frames 
of the enclosing procedure. Then accessing a frame of an 
enclosing procedure is achieved hy indirecting down this s_tatiq 
chain, since the number of levels on the static chain is 
typically less than 5, these iudirections never go very far. In 
ALGOL68C we maintain a pointer to the outermost level, and one to 
the current procedure: in this way only about 2~ cf static frame 
accesses require indirection down the static chain (and then, 
less than 4 indirections). These indirections can be further 
reduced by remembering which registers currently address outer 
levels. It should be noted that, using the above techniques, if 
a block requires no dynamic frame then no rub time cost is 
incurred by block entry or exit. This means that the programmer 
can freely use begin/end for structuring his program without 
worrying about extra code being generated. The environment 
pointer of a routine is now a pointer to the frames of the 
enclosing routine, and is used for the static chain when the body 
of the routine is elaborated. 

The mechanism used by ~LGOL68C for run time management of 
dynamic frames is unusual. At first sight it appears too 
complicated, but by paying a little in in conceptual complexity 
we have attempted to minimize run ti~e actions, and as far as 
possible to eliminate them completely for blocks cr procedures 
with no dynamic frame. We define a dranqe to he any range 
(block) which, excluding inner ranges, allocates storage on a 
dynamic frame, and a droutine to he any routine ccntaining a 
drange. For each dynamic frame we will require a pointer to the 
top of that frame - this we call the dsmd (dynamic stack 
management data) for the frame. ALGC[68C always keeps the dsmd 
stored on the static frame at an address known as the ~dssa - as 
will be seen, this simplifies our run time actions. With the 
stack organization as descrited above, we would perform the 
following actions; these will be modified in the light of changes 
to be described later. 

88 



a) 

b) 

on entry to the outermost drange of a droutine, we allccate a 
dsma and initialise its dsmd tc the top of the static frames. 

On entry to an inner drange, we allocate a new ds=a and 
initialise its dsmd to the previous dsmd. 

c) To allocate storage on a dynamic frame, we use and update the 
current dsmd {as addressed by the current dsma). 

d) On exit from an inner drange, we revert tc the cuter dsma. 
Note that this is not a run time action, since we know the 
dsma (as a static frame offset) at compile time. 

• This mechanism is simpler at run time than the alternative of 
keeping a single dsmd and preserving/restoring it; it is the only 
tenable mechanism for the stack organization described belcw. 
Under this scheme, jumps present no problem - at the target 
label, we revert to the appropriate ds~a. It is difficult to 
produce an alternative scheme which does not have to preserve the 
dsmd at every call in case there is a jump cut of a drange in 
some inner routine; such preservation has the effect that you pay 
for dynamic frames e~en if you do not use them• An example cf 
our stack organization would now he: 

beqin 
[ l: 10]int a; 
pr0 c f = in t : 

beqin 
[ l:IC]int h; 
int p, q ; 
~eqin 

[ l:10]int c; 

end 
end : 

f 
end 

The stack after declaring 'c' might £~: 

outer block 

I I 
liof 'a' If°r ,f,j S ma I - i ~  ' 

i , i[ 
outer display display register 
register for ' f' dsma 

middle inner 
block hlcck 

Pi!Vmiddle'hI'idnmd~l c , d s m d ,  ,, , e~ctfementsliements'b' 'c' 

I Ill 
I 1 " 

current 

89 



Considerable difficulty is presented by argument passing, 
when the arguments have dynamic parts allocated during their 
elaboration. For example: 

( random < 0.5 I f I g )(a, loc[x:y]int, h) 

Firstly, consider which display register to use for addressing 
the static parts of the arguments while inside the called 
routine. 

a) Using the display register of the calling :routine is nct 
possible, since inside the called rcutine we would not kncw 
the offsets for the arguments. 

b) We could use a separate display register solely fcr the 
arguments, but this would double the number cf display 
levels. (This solution is quite commonly adcpted by othe~ 
i .~ ple men tots. ) 

c) The only other possibility is to address the static pairs cf 
%he arguments using the display register cf the called 
ro uti ne. 

Assuming choice (c), then, we must consider where tc place the 
dynamic frame allocated for the arguments. 

a) We cannot place it before the static parts of the arguments, 
since we do not yet know its size. 

b) we can place it after the static parts of the arguments cDly 
if we place it after the other static frames of the called 
routine, but in ALGOL68C we do not know the size of the 
called routine's static frames while we are elaborating %he 
call. Some implementors do arrange to maintain this 
information at run time. 

By this stage in the design of the stack we have accumulated 
(albeit implicitly) several problems. 

1) Where to place the dynamic parts ~f arguments. 

2) How, at the calling end, to address the static ~arts of the 
arguments since we do not at that stage have a display 
register for them. 

Storage is wasted since dynamic frames start at the high 
water mark of the static frames of the routine. 

4) The ALGOL68C separate compilaticn mechanis~ would require a 
display register for each segment. 

5) Any proposed solution of (1) to (a) with:tDis fcrm of stack 
organisation appears to he much tcc ,ce mplica'ted. 

90 



In ALGOL68C, to solve these problems we made a drastic 
re-arrangement. Instead of continuing attempts tc organize a 
single stack, we split the storage into two independent stacks. 
The static stack contains all static frames, and is addressed by 
display registers and offsets ; the dynamic stack contains all 
dynamic frames, and is referred to from the static stack. 

We can now have a simple solution to the argument passing 
problem. The~static frame for the arguments is addressed at the 
calling end using the display register of the calling routine - 
since there are no intervening dynamic frames we know all the 
offsets at compile time. Inside the called routine, the 
arguments form the first static frame. The dynamic frame (if 
any) for the aguments is treated as any other dynamic frame, with 
no additional problems; if there is such a dynamic frame, the 
arguments will constitute a drange. ~hus: 

static 
stack 

dynamic 
stack 

 alling l tore fo  atic rcutin  
Static framesl heading I ~_rgum_____ent framelstitic fram_ es_~_ 

[dynamic frames 1 dynamic frame [ dynamic . frames I 

The wasted static frame storage is eliminated, and we dc not 
need a separate display register for separately compiled 
segments. 

With this revised organisation, we must revise the actions tc 
be performed for managing the dynamic frames. Since we no Io~ger 
know at compile time the base for the first dynamic frame cf a 
droutine, this information must he passed with the call. Since 
we do not know at the call whether the called routine is, cr will 
call, a droutine, the information must he passed with every call. 
To avoid this causing a run time action on every call, we always 
have the current dsma available at run time (in a particular 
register, say, or in a fixed store location). The actions tc be 
performed are then: 

a) On entry to ~I_n/ drange, allocate a new dsma, initialise its 
dsmd to the previous dsmd, and reset the run ti~e dsma. 

On exit from any drange, restore the run time dsma to its 
previous value. 

c) To permit (h) in the outer drange of a drcutine, ~rese~ve the 
dsma on entry to a droutine. 

To allow for labels and jumps, we include as a droutine any 
routine~containing a label; at a la~61 we reset %he dsma tc the 
appropriate value. Note that these arrangement~ still satisfy 
the dictum that if you don't use the dynamic stack then you 

91 



shouldn't pay for it lexcept at la~els). 
be as follows: 

Cur exampRe sight now 

beqin 
[ l:lO]int a; 
proc f = (in% i)int : 

beg in 
[ l:10]int h; 
.heqin 

[ l:10]int c; 
(i <= I I 1 i i * f(i-1) ) 

en_~d 
end ; 

print(f(1) ) 
end 

The stacks after declaring 'c' would r e :  

static 
stack 

d yna mic 
stack 

outer block middle blcck ironer block 

"[a I o u t e r  ~h~adin~-i i o r e s e r v e a l  b Imida:i-~ll c l i .nnerlt 
i idsmd / t fo r  ' f ' l  Idsma I Idsmd J! t a s i a  II 
I~1 • J / I ~ i ;  i , Ul  
' , I " - - -  /t " 

[elements I eleme---nts l---e l~.Ta-e n t ~ 
l o f  ' a '  ! of ' b '  i o f  ' c '  [ 

One serious problem remains in cur description of the stacks 
- this is the yielding of a r=~sult from a block or a procedure. 
The difficulty is that the result is constructed on stack frames, 
inside the block or procedure, which are about to he 
relinquished. For example: 

begin 
[ I: |000]int a; 

(1,2,3,4) 
end  

static 
stack 

dynamic 
s tack 

I ore ~io-s~-I~e~c~ ipt cr i curr~n~l 
~smd I , ~or ~1,2, 3,4)[ ~s~a I 

\ | "  .... . . . . . . . .  1 ' ' 
~ _ _  ~_~ . . . . . .  ~ .. . . . . . . . .  _ _ ,  
.oreviousl elements I 1 2 3 ~ ! 
l frames of ' a' I 

• . ..... l . . . . . . . . . . . . . .  J_ 

92 



There are basically two possibilities: either copy the value cntc 
the outer SWOST and DWOST, or delay relinquishing the frames. 
However, copying can he very expensive (and sometimes very 
difficult), while delaying relinquishment can waste vast a~cunts 
of storage. An extensive analysis of this problem has been given 
by Branquart, and an algorithm which assists in co~ying has been 
given by Meertens. It is certainly test to delay the decision as 
to whether to copy or to avoid relinquishing, until as late as 
possible. At present ALGOL68C does not recover the storage in 
this situation - this is hardly satisfactory. With sufficient 
care, it is possible to achieve satisfactory results even in 
extreme examples such as: 

op * = ([ lint x,y)[ lint : ... , 
÷ = ([ lint p,q)[ lint: ... ; 

[ 1: 100lint a,b,c; 

i :  a * b + | - . .  i c i .qoto 1 ) ;  

In particular, the compiler can treat some constructs as if they 
were dranges (though not actually ranges) to aid the recovery cf 
dynamic stack. 

3. Summary 

The power and flexibility of the constructs available in 
ALGOL68 lead to considerable complexity in the objects being 
manipulated and in the management of the storage for them. By 
dividing the stack into two independent stacks we greatly 
simplify these problems, although cn an unsegmented machine the 
need for three storage areas (the stacks and the heap) presents 
extra difficulties, an alternative solution, often adopted, is 
to place dynamic parts on the heap in times of difficulty - this 
we still must do when assigning objects of modes such as 
union([ lint,[ ]real) - but this approach was discarded, because it 
is expensive and because it uses the heap behind the programmer's 
back. A full discussion of the prohl6ms of result passing would 
be outwith the scope of this paper, as are the techniques 
available for flex. 

4 ~cknow!gdgements 

The ALGOL68C compiler was developed in Cambridge by a team 
led, until January 1975, by s.R.£ourne. Since then it has been 
maintained and further developed by C.J.Cheney for the Universit% 
of Cambridge Computing Service. Throughout the development of the 
compiler much advice and much work has been given by M.J.T.Guy, 
I.Walker, and myself. Much of the work has beer funded by the 
Science Research Council, and the maintenance is new supported by 
the Computer Board. Help has been given by our various users and 
by I.Wand of York University. Much of our terminology, and some of 
the ideas, are based on those of P. Eranguart. 

93 



5__ References 

[ I] A. van Wijngaarden, et al, "Revised Repcrt c~ the Algorith~ic 
Language ALGOL 68", Acta Informatica, Vol. 5, pts 1,2,3, 
(1975). 

[2] S.R.~ourne, A.D. Hirrell, I. Walker. "ALGOL68C Reference 
Manual", Cambridge University Cczputer laboratory, (1975). 

[3] P.Branquart, et al, "An Optimized Translation Process and its 
Application to ALGOL 68", Report R204, M.B.L.E., Brussels, 
(1974). 

[4] P.Knueven, "The Foundation of a Flexible Bun-ti~e System for 
ALGOL 68S", ~n "Experience with ALGOL 68", Proceedings cf the 
Liverpool University Conference, April 1975, Ed. C.C. Charlton 
and P.H.Lang. 

[5] L.G.L.T.Meertens, "A Space-saving Technique for Assigning 
ALGOL 68 Multiple Values", Mathematisch Ce~trum, Amsterdam, 
(197E). 

94 


