Storage Management for ALGOL68

A, . Eirrell

Abstract This paper describes scms of the
techniques which can bte used for managing the
run time storage required for an ALGOL6S
program. The emphasis is on stack storage,
since garbage coilection techniques would
require another paper. The rrcblems caused by
some ALGOL68 constructs are described; the
solutions given are mainly those adopted in
the Cambridge ALGOL68C systenm.

1 Representation of obijects.

ALGOL68 is a language concerned with internal objects and
operations upon them. 1In designing the storage panagement for
ALGOLA8 one of the first questions tc ke faced is how to
represent these objects. 1In other words, when a value of sone
mode {data type) is assigned, or yielded, what bit patterns are
physically moved around the store cof the machine,

For some modes, the choice of representation is
straightforward:

int => appropriate (wachine-dependent) bkit pattern -
typically a single word.

2]

har => single byte (if possitle).

feud
Hn
A%

real floating point punker.

Other modes can be built out of simpler parts:

struct {se.) => c¢concatenation of the fields, pcssibly
with gaps for boundary alignment,

union (...) => {marker, valueg)

routine => (entry address, envircnment pointer)

Note that although the ARIGCLS68 report does nct talk of values
of mode union{...), a value which has fkeen united is universally
represented as the value with a small marker indicating its wmcde.
The 'environment pointer'! in a routine is used in addressing
items in blocks outside the routine - this is ccnsidered later.

It should be pointed out here that it is possible to achieve
considerable simplification of many of our prcblems by an
indirection. By representing values of the more corplicated
modes by a pointer to data in a glokal stcrage area, the whcle
stack organization is simplified; this substitutes the problens
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of managing the global storage area fcr the problems described
below, I believe such a technique has Lkeen adopted in the
Carnegie-Mellon implementation of AILGCI68S.

The representation of multiple values is a cause cof many
probleas. There are several causes. Firstly, we npust always
know the bounds of an array (multiple value), sc that we can
generate code to copy the array, and for array bcund checking.
Often, situations arise such that we cannot know these bounds at
compile time and so must store them as part of the run time
representation. Secondly, the facility of trimming a multigle
value allows the program to manipulate sub-arrays. Unless we
copy the elements of an array when we trip {(which seens
needlessly expensive), we must store separately from the elements
a block containing the bounds of, and a pecinter to, the elements.
Thirdly, when subscripting an array we require a uniform distance
between the addresses of the e€lements. #hen the elements are
themselves arrays, we must carefully ccnsider hcw tc achieve

this. /
For example:

[ X Jint v ( {]int x=(1,2)

y=1(1,2,3),
z=1{(1,2,3,4);
l,Y.2)
We require that {(address for v[1]}) - {address for v[21})

(address for vi21]) - (address fcr v[3))

Thus:

Additionally, the descriptor ccantains a stride for each
dimension, to indicate the spacing tetweep elements., For
example, if we have

1]

Jint v = {eeeses) s

Les
{,]int p = W[,l,]:
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then the representations of *'w' and 'p' are:

w = [[12101100 1§1o§1o/1§’1o/§:j
strides
0 1 10 11 R 1 101
N[(1,1,13]%[1,1,2] lw[ 1,2, 13wl 1,2,21] _ W[2,1,11]w(2,1,2]]
p[1,1] |pl1,2] ! pl2,1] |p(2,2]
p =[] [1§1o=._1eoL1§1/0§1r_[
strides

A final step in the representaticn cf such objects is usually
that the pointer, instead of teing the address cf the first
physical element, is the address which would be that c¢f the
element whose subscript is 0 in each dimension, even if this is
not physically part of the array (cor even a legal address). This
simplifies subscripting, since the computation no longer invclves
the bounds (unless for checking purposes).

Thus in general objects involving array elements can be
complicated tree structures. When such an object is assigned, or
storage for it is generated, vwe must generate ccde to manage such
tree structures. Innocuous looking declaraticns or assignments
can generate considerable tracts of ccde, and the presence of
such objects is the major reason fcr comrlexity in cur stack
management. In future we will term the first level of such an
object the static part of the object (its size is known at
compile time); the remainder of the ckject is the dyramic part
(its size may not be known until run time).,

The representation of names, that is objects whcse mode is of
the form ref amode, is mainly straightforward - the address c¢f arn
amode object. However, a complication arises if apode is of the
form { ... ]bmode. This complication is caused by trimming; the
scope of the name yielded by trimming is the same as that cf the
name being trimmed. Thus the descripter preduced can

be required to exist longer than the tlock in which the trinmming
occurs, and so cannot be allocated c¢n the present stack frame.
For example

{1:10] ref{ ] int v;
[1:26] int w;
for i to 10 do int j; ... 3 v[i):=w[i:i+10 at i] od;

Here, the descriptors for the arrays referred tc by the
elements of 'w' are created when trimming 'w! inside the lcorp,
but their storage cannot te allocated at this pcint. Por this
reason, when allocating store for an chiject whose mcde is cf the
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form ref[....]lbmode, ve also allocate store fcr a descripter.
Por example the declaration of 'v!' alloccates stcre fer 10 extra
descriptors., An immnediate optimisation is to regresent such
names as the descriptor, rather than its address. FPor exanmrle,

v= [jrimoia]

;13108 [ji2inni | 133125 [ ..., elements of 'v!
: ‘-':_,/_,-—»—""//
o~ e e e o e e elerents of 'w!
W = §1i10;

Note that this causes the implementor some tedium, since
ref[... ]Jbmode must always be bandled as a stecial case. It alsc
causes minor complications in handling identity relaticns for
objects of such modes.

2 The stack

The stack organisation we will develop is based on the
conventional ALGOL6A0Q stack, which is summarised here.

The stack consisis of a number of frages, cne fcr each blcck
which has been entered but has not yet terminated,

At any time there is a current display. A disglay consists
of a number of display registers (or levels), each containing the
address of some frame, The current display consists of registers
addressing the current and each textually enclecsing block.

To access a word of the stack, we us2 an address of the fcim
[display register ] + offset

where the display register (but not its contents) and tha cffset
are known at compile tinme.

Duz to recursion, there may bte more than cne frawe for each
block.

O entry to a block, a new frame is started and an extra
display register added to the display in order to address the
frame.

On entry to a procedure, the complere display is resst tc

correspond to the block in which the procedure (not the call)
occurred. To allow this operation, the representation of a
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routine value contains an environment pointer indicating the
values to load as the new display. This routine value is kncwn
as a closuyre:; due to recursion, there may be different closures
for a single routine text.

Oon exit from a:block or procedure, the display is restcred to
its previous value.

In ALGOL68, there are several categories of data we wish tc
store on the stack.

a) A heading containing the address cf the previous frame,
subrouatine link, information for setting up the display, etc.

b) values for definitions: for *int i' the value referred tc,
for 'real x = random!' the value itself.

c) anohymous results created during elakecration cf the blcck.
d) array elemeats
e) storage for explicit loc generatcrs.

Of these (a), (b) and (c) are straightfcrward, but (d) and
(e) are difficult since the amount ¢f storage required may be
large and may not be known at compile time.

It is common practice to store {a), (b)), (c) at the start cf
the frame, with (d) and {e) at the end. This has two advantages:
the offsets written in instructions are smpaller (many machines
place severe limitations on such offsets), and vwe always know the
offsets for identifiers at coapile time., We can thus consider
each frame as being divided into a static frame containing (a),
(b), (c), and a dynamic frame (possiltly empty) ccntaining (d) and
(e) . Further, it is convenient to treat (c) separately as the
SWOST (static working stack) frame, calling the remainder cf the
static frame the static idf frame. Similarly, ws can sub-divide
the dypamic frame into the LWQST frame containing the dynanmic
parts of SWOST objects, and the dynamic idf frame. For exanrle:

begin
int p, 9, ¥, [1:3]cef int s;
for i to 3 do sf{i] := loc¢ int od;

(p,q,r) #row display#



{m=mmm—=- static frame --~-—----- P R dynamic: frape ----=-- >

<~ static idf frame ->|<--SWCST->|<{---dynamic idf--->|<-DWOST->|

{
|
i
i { frame | frame } frame |
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display register for
this frane

Management of the static frames is mainly straightforwvard.
Storage is allocated on the static idf frame cnly at definiticns.
The structure of the language is such that at a definition, ncae
of the anonymous results which have been created in the current
block still exist, so the SWOST part of the frare is empty. Thus
the static idf frame is contiguous stcrage starting at the end of
the heading area. The SWO0ST, then, is always placed at the end
of the static idf frame, However, sSituations can arise which
produce holes in the SWOST; these are typically. when w2 are
constrained to produce the result of some action without
overwriting its parameters. BAn example might be:

Q
Q
B
v
A
(1]
"
[ ]
L ]
L]
-
N
LX)
1
.
L]
oe

1 [}
W z store for
¥ X Z

It is always possible to avoid such hcles by copying, and
with sufficient care most holes can te avoided withcut copying.
In ALGOLE€8C, we decided that the extra expense c¢f allcwing the
holes was not great enough to justify the complexity {or exgense,
if we copy) of avoiding them., Accordingly, holes are allowed tc
occur on SWOST; however since SWCST for a klock is always enmpty
at a semicolon and before a definiticn, such holes are generally
of short duration. It should te noted that all static frase
of fsets are known at compile time. No run time management is
required.

Befora considering the management cf dynaric frames, we

should look at an optimisation available to us., Within a single
procadura, vwe know at compile time all the offsets inside each
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static frame. If, then, we place all static frawes first,
folloved by the dynamic frames, we will be able tc address all
the static frames with a single display register, pcinting to the
base of the first static frame. This optimisation is often
described as having one frame per prccedure, tut this is nct
really an accurate description., 1In terms of when store is
allocated and recovered, and in the interleaving of static idf
frames with SHOST, we are still running one frame per block. The
only alteration is to omit some display registers, and move the
dynamic frames, The dynamic frames are still, in every sense,
one per block. This optimisation gives us several gains. The
nuaber of display levels is drastically reduced, being limited tc
the textual nesting depth of procedures - in practice, we have
never encountered depths greater than 5, although ALGOL68C allcwus
for 64, The number of display registers required is in fact less
than the textual nesting depth, since if an enclcsing frame is
not referenced from inside a procedure, it can be onmitted from
the display. (This is allowed by, and required by, the rules c¢n
the scope of routine values.) It is rpcssible, instead of keeping
the complete display, to keep only a pointer to the static frames
of the current procedure, and store there a pointer to the frames
of the enclosing procedure. Then accessing a frame of an
enclosing procedure is achieved Lty indirecting down this static
chain, Since the number of levels on the static chain is
typically less than 5, these indirections never go very far. 1In
ALGOL68C we maintain a pointer to the outermost level, and one tc
the current procedure; in this way only akout 2% cf static frare
accesses require indirection down the static chain (and then,
less than 4 indirections). These indirections can be further
reduced by remembering which registers currently address outer
levels. It should be noted that, using the above techniques, if
a block requires no dynamic frame then no rus time cost is
incurred by block entry or exit. This means that the prograesmer
can freely use beqin/end for structuring his prcgram without
worrying about extra code being generated. The epvirconment
pointer of a routine is now a pointer to the frames cf the
enclosing routine, and is used for the static chain when the becdy
of the routine is elakorated.

The mechanism used by ALGOL68C for run time management of
dynamic frames is unusual, At first siqght it afpgears too
complicated, but by paying a little in in conceptual complexity
we have attempted to minimize run timge acticns, and as far as
possible to eliminate them completely for blocks c¢r procedures
with no dynamic frame. We define a dranqge tc ke any range
(block) which, excluding inner ranges, allocates storage on a
dynamic frame, and a droutine to ke any routine ccntaining a
drange. For each dynamic frame we will require a rointer to the
top of that frame - this we call the dsmd (dynamic stack
management data) for the frame, ALGCL68C always keeps the dswnd
stored on the static frame at an address kpown as the dsma - as
will be seen, this simplifies our run time actions. With the
stack organization as descrited akove, we would rerfcrm the
following actions; these will be modified in the light of changes
to be described later.
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a)

b)

c)

d)

This mechanism is
keeping a single dsad
tenable mechanisa for

On entry to the outermost drange of a droutine, we allccate a
dsma and initialise its dsmd tc the top of the static frares.

On entry to an inner drange, we allccate a new dsra and
initialise its dsmd to the previous dsud.

To allocate storage on a dynamic frame, we use and update the
current dsmd ({as addressed by the current dsma).

On exit from an inner drange,
Note that this is
dsma (as a static

we revert tc the cuter dsma,
not a run time action, since we know the
frame offset) at comrpile time.

simpler at run time than the alternmative of
and preserving/restoring it; it is the cnly
the stack organization described belcw.

Under this scheme, jumps present no problem - at the target

label, we revert to the appropriate dsra.

It is difficult to

produce an alternative scheme which doces not have tc preserve the
dsmd at every call in case there is a jump cut ¢f a drange in
some inner routine; such preservation has the effect that you fpay

for dynamic frames even if you do not use then.

An exanple cf

our stack organization would now tLe:

begqin
[ 1:10)int a;
proc f = int:
begin
{1:1C])]int L3
int p, q:
egin
[1:10]int c3
end
end;
f
end
The stack after declaring 'c' wmight te:
outer block middle inner
block klcck
(___J\_~\ f—/L——w ‘
outer| a |elements|heading|p g imiddle|bjinner]c elementsfelements
dsmd of 'a! for '£¢ dsmd dsmd cf *h? of 'c?
’ X4 1A ‘j
outer display display register current
register for *'f! dsma




Considerable difficulty is presented by arqurent passing,
when the arguments have dynamic parts allocated during their
elaboration. For example:

( random < 0,5 | £ | g ) {a, loc[x:yJint, b)

Firstly, consider which display reqister to use for addressing
the static parts of the arquments while inside the called
routine,

a) Using the display register of the calling routine is nct
possible, since inside the called rcutine we would not kncw
the offsets for the arguments.

b) We could use a separate display register solely fcr the
argueents, but this would double the number of display
levels, (This solution is quite ccmmonly adcpted by otherx
inplementors.)

c) The only other possibility is to address the static patts cf
the arguments using the display register cf the called
routine.

Assuming. choice (c), then, we must consider where tc¢ rlace the
dynanic frame allocated for the arquments.

a) We cannot place it before the static parts cf the argurents,
since we do not yet know its size,

b) We can place it after the static parts of the arguments cnly
if we place it after the other static frames of the called
routine, but in ALGOL68C we do not know the size of the
called routine's static frames while we are elaborating the
call., Some implementors do arrange tc maintain this
information at rumn time.

By this stage in the design of the stack we have accunulated
(albeit implicitly) several protlenms.

1) Where to place the dynamic parts pf arquments,
2) How, at the calling end, to address the static parts of the
arguments since we do not at that stage have a disglay

register for them.

3) Storage is wasted since dynamic frames start at the high
vater mark of the static frames of the routine.

4) The ALGOL68C separate compilaticn mechanism would require a
display register for each segment.

5) Any proposed solution of (1) to (4) with this fcrm of stack
organisation appears to ke much tce ccomplicated,
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In ALGOLEEC, to solve these probklems we made a drastic
re-arrangement. Instead of continuing attenmpts tc crganize a
single stack, we split the storage intc two independent stacks.
The static stack contains all static frames, and is addressed by
display registers and offsets; the dynamic stack contains all
dynamic frames, and is referred to from the static stack.

We can novw have a simple soluticn to the arqument rpassing
problem. The static frame for the arguments is addressed at the
calling end using the display register of the calling routine -
since there are no intervening dynamic frames we kncw all the
offsets at compile time., Inside the called rcutine, the
arguments form the first static frame. The dynaric frame {(if
any) for the aguments is treated as any other dynamic frame, with
no additional problems; if there is such a dynamic frame, the
arguments will constitute a drange. Thus:

static calling store for|static called rcutine
stack static frames|heading arqument frare|static frares

L i

d ynamic calling argument called routine
stack dynamnic frames dynaric frame dynamic frames

The wasted static frame storage is eliminated, and we dc nct
need a separate display register for separately conpiled
segnments,

With this revised organisation, we must revise the actions tc
be performed for managing the dynamic frames. Since we no longer
know at compile time the Lkase for the first dynaric frame cf a
droutine, this information must ke passed with the call. Since
we do not know at the call whether the called routine is, cr will
call, a droutine, the information must te passed with every call.
To avoid this causing a run time acticn on every call, vwe always
have the current dsma available at run time {(in a particular
register, say, or in a fixed store lccaticn). The actions tc be
prerformed are then:

a) On eaxtry to any drange, allocate a new dsra, initialise its
dsmd to the previous dsmd, and reset the rup tige dsma.

D) On exit from any drange, restcre the run time dsma to its
previous value.

¢) To permit (b) in the outer drange of a drcutine, gpreserve the
dsma on entry to a droutine,

To allow for labels and juaps, we include as a droutine any
routine.containing a lakel; at a latel we reset the dswa tc¢ the
appropriate value., Note that these arrangements still satisfy
the dictum that if you don't use the dynamic stack then you
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shouldn't pay for it

{except at latkels).
be as follows:

Cur exarple might ncw

begin
[1:10])int a;
proc £ = (int i)int:
begin
{1:1C0]int
kegin
{1:10]int c;
(1 <=1 11} 1% £(i-1) )
end
end;
print { £(1) )
en

The stacks after declaring *'c' would te:

outer block middle blcck ipner blcck

//"““‘-’l\“‘“”*\/"“j\"‘\

}

static a jouter theading| i |preserved bk [piddle| c |inner
stack dsmd [for ! f! dsma ’ dsmd | dsud
I | } }
L 3 ]
current dsna
A
dynamic elements elements €lenents
stack of 'a? of ' of 'c!t

One serious problem remains in cur descripticn of the stacks
- this is the yielding of a result frcm a blecck ocr a procedure.
The difficulty is that the result is constructed on stack frames,
inside the block or procedure, which are aktout to ke
relinquished. For example:

begin
[ 1:1CCCJint a;

(1,2,3,4)
end

static orevious| a Hescriptcr |[current|
stack dsmd I | for {1,2,3,4)( dsnd ,

{ }

_lr \ v

dynanic previous|elements |1 2 3 4 |

stack frames of 'at | I




There are basically two possibilities: either ccpy the value cntc
the outer SWOST and DWOST, or delay relinquishing the frames.
However, copying can Le very expensive (and scmetimes very
difficult), while delaying relinquishment can waste vast awcunts
of storage. An extensive analysis of this prcblem has been given
by Branguart, and an algorithm which assists in copying has been
given by Meertens, It is certainly lest to delay the decisicrn as
to shether to copy or to avoid relinquishing, until as late as
possible., At present ALGOL68C does nct recover the storage in
this situation - this is hardly satisfactory. ®With sufficient
care, it is possitkle to achieve satisfactory results even in
extreme examples such as:

L A ] I

-
- e e E ]

op * = ([ lint x,y)f Jint
+ = ({ Jint p,q){ Jint
[{1:100])int a,b,c;

l: a * b+ {( «0 | € | goto 1 )3

In particular, the compiler can treat scme constructs as if they
vere dranges (though not actually rapges) tc aid the recovery cf
dynamic stack.

3 Sumpary

The power and flexibility of the ccnstructs available in
ALGOL68 lead to consideralble complexity in the objects being
manipulated and in the maunagement of the storage for them. By
dividing the stack into two inderendent stacks we greatly
simplify these problems, although cn an unsegrented machine the
need for three storage areas (the stacks and the heap) presents
extra difficulties, Bn alterrative scluticn, cften adcpted, is
to place dynamic parts on the heap in times of difficulty - this
we still must do when assigning okjects of modes such as
union ([ Jint,[ Jreal) - bnt this apprcach was discarded, because it
is expensive and because it uses the heap behind the progranmer's
back., A full discussion of the protlems of Tesult passing wculd
be outwith the scope of this paper, as are the techniques
available for flex.
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