
Proceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) II-16.

The Cap Filing System

R.M.Needham and A.D.Birrell
Computer Laboratory, University of Cambridge

The fil ing system for the CAP is based on the idea of

preservation of capabilities: if a program has been able to

obtain some capability then it has an absolute right to preserve

it for subsequent use. The pursuit of this principle, using

capabil i ty-oriented mechanisms in preference to access control

lists, has led to a fi l ing system in which a preserved capability

may be retrieved from different directories to achieve

different access statuses, in which the significance of a text

name depends on the directory to which it is presented, and in

which fil ing system 'privilege' is expressed by possession of

directory capabilities.

Preservation of capabilities

An executing program (protected procedure) in the CAP

computer has access to a set of capabilities specified by its

capability segments. These capabilities fall into various

classes: store capabilities for segments of code or data, ENTER

capabilities permitt ing transfer of control to other protected

procedures, and software capabilities which confer such

privileges as using a message channel, receiving peripheral

interrupts, or stopping the system. These capabilities all

represent to a program the right to have or to do something;

the preservation of information from one run of a program to

another (a universal operating system requirement) is thus seen

by the CAP programmer as the preservation of a capability

rather than of an object itself. It is the responsibility of the

system to preserve an object because the user has preserved a

capability for it. Ritchie and Thompson make a somewhat similar point

in [1] in a non-capability context.

Capabilities are preserved in structures of two types,

directories and procedure control blocks or PCBs. The
primary purpose of a directory is to record a correspondence

between a text names and capabilities; it will be explained later

how directories perform other funct ions related to access

control. The purpose of a PCB is to preserve the capabilities

required for the construction of an instance of a protected

procedure (see Needham and Walker, and also below). We do

not discuss PCBs much in this paper; one remark which should

be made is that since directories are not the only way in which

capabilities are preserved, it follows that there is no

requirement that a preserved capability have a text name.

The capabilities most commonly preserved are those for

store segments. The CAP operating system implements a

virtual memory for segments in user processes and in most

system processes. Associated with each segment is a system

internal name (SIN) and a disk address. In order to preserve a

given store capability, it is necessary to determine the SIN of

the specified segment and store it in a directory. A system

data structure is accordingly maintained in which the SIN of

any segment capability in current use may be looked up. In

order to keep track of which segments have capabilit ies

preserved in directories, a use count for segments is

maintained in a system data structure called the SIN-directory.

The count is incremented wban a capability for the segment is

preserved, and is decremented when a directory entry is

removed. The count is also incremented when a current

capability is created for the segment, that is, when the segment

becomes active in the virtual memory. When a user retrieves a

preserved store capability f rom a directory, a system process

(the virtual store manager or VSM) is told that the object

corresponding to a particular SIN is wanted in the virtual

memory, determines its disk address, and constructs a store

capability appropriately. This capability is then passed to the

user.

As mentioned, the use count in a SIN determines whether

the system has a duty to mainta in the corresponding segment.

Since, as will be seem, directory structures can be cyclic, there

is no guarantee that inaccessible disk space will be

relinquished at the earliest possible moment. The disk is

garbage-collected at each system restart; the f i l ing system is

not designed to run for ever.

Preservation of ENTER capabilities is achieved by

storing the SIN of a segment containing a 'recipe' for

construction of the protected procedure belonging to the
ENTER capability. The segment containing the recipe is the
procedure control block.

l l

Preservation of software capabilities is much simpler.

They do not refer to anything outside their own

representations, so thay can simply be copied into the

directory.

Capabilities for Directories

We have described how the primary aim of directories is

achieved - to facilitate the preservation of capabilities in

relation to particular text names. We now describe other

aspect of the fi l ing system, which are consequences of the

policy of choosing the mechanisms of capabilities rather than

of access lists.

The preservation of capabilities could be achieved by

having a single data structure called ' the directory' in which

any fur ther structure was absent or expressed solely by

conventions about the textual structure of names (cf.

O S / 3 6 0) . The SIN-directory is a single structure, but it is quite

unconcerned with text-names and thus with the operations usually associated

with file directories. It is usually considered convenient to have

more than one directory, and for the structure of directories to

have some system significance. The original intent ion on the

CAP was to construct a straight hierarchical structure of

directories and subdirectories and to control access to files by

means of access lists; there is nothing in the underlying

capability implementat ion which forces the use of a fi l ing

system which follows the capability analogy in its structure.

In the course of designing such a system we realised that to do

so would be a substantial simplification. Accordingly we

introduced the concept of a directory capability. Analogously

to the way in which a store capability allows access to a set of

words of store, a directory capability allows access to a set of

preserved capabilities. Consider for example two users 'ADB'

and RMN'; each is likely to be provided with a directory

capability for his own user f i le directory (UFD). Each UFD

would have a number of preserved capabilities. For example,

ADB's UFD might have entries .STOP, a software capability

for stopping the system, .TEXT, a store capability for the

source of a compiler, and .BIN, a store capability for the

executable code of the compiler. RMN's UFD might contain

other preserved capabilities named .P, .Q.

The operation of retrieving a capability now has two

arguments - it requires a text name and a directory capability.

Any retrieval must provide these two things; there is no

implied, default, or 'working' directory. By allowing the user

to perform a wide range of operations on directory capabilit ies

just as he can on store capabilities, many facilities become

available at once. Suppose ADB had a large number of files,

and wanted to be able to group them. He could obtain f rom

the system a capability for a new empty directory just as he

could obtain a capability for a new empty store segment. He

could then preserve capabilities in it and later retrieve them.

it is likely that he would wish to preserve a capability for the

new directory in his existing UFD, but it is not essential that

he do so. The significant thing about a directory is its type,

not its presence in some larger structure. It is possible for a

program to construct a complicated structure of directories

which, like work segments, will go away when the program

finishes. If ADB does preserve a capability for his new

directory in his UFD, we might have a situation where the

UFD contains the software capability .STOP, and a directory

capability, say .A68C, which is the newly preserved directory.

This in turn contains .TEXT and .BIN which are preserved

store capabilities. Before considering fur ther ramif icat ions we

outl ine the implementat ion of directory capabilities.

Internal Structure of Directories

The data content of a directory (text names, SINs and so

on) is stored in a segment which naturally has its own SIN.

Preservation of a directory capability is effected by storing its

SIN, just as for store capabilities. The informat ion in a

directory, however, is privileged because of the presence of

SINs. The SINs are just integers, and they refer to all the

objects known to the fi l ing system or virtual memory. It is

therefore highly desirable that a user should not be able to

assert falsely that a preserved segment capability is a directory

capability, or to write arbitrari ly into a directory segment.

The former safeguard is achieved by having the SIN-

directory record type informat ion about each retained segment;

three basic types are recorded - store, directory, and PCB. The

programs which actually construct capabilities for issue to a

user make sure that the correct variety is made on each

occasion. The latter safeguard is easily achieved by making

use of the CAP's protected procedure mechanism. A directory

capability in the hands of the user is an ENTER capabili ty for

a protected procedure (see Needham and Walker) which has

the directory segment bound to its R-capabil i ty segment. All

such directory capabilities share the same code, that of a

procedure called the directory manager which provides the

only interface between the user and the directory segment. It

is the responsibility of the SIN-directory manager to construct

the ENTER capability when a directory capability is retrieved.

The user cannot read the directory segment so he cannot come

to rely in any way on its format. The user does not thus see

himself as presenting a directory capability and a tex t -name to

a retrieval engine; he sees himself as presenting a text -name to

a p r o c e d u r e . This contrasts with CAL-TSS, where two capabilities and a

text-name were presented to a retriever, an approach which seems to leave

more management reponsibilily to the user, for example in remembering

which access capability goes with which text-name, unless the generality be

limited by convention.

Sharing capabilities

It is customary for filing systems to provide facilities for

users to allow access to some of their files to be available to

12

other users. This is commonly achieved by an insertion in a

directory of the general form 'allow access to .BIN if user =

RMN', 'allow access to .BIN if program = LOADER',or

sometimes 'allow access to .BIN if the requestor produces

such-and-such a magic number' . We have chosen to provide a

capabil i ty-oriented system which does not have such access

lists at all. The right of access to an object is signified by

possession of a capability for it. A program can pass this

right to another by passing the capability (by mechanisms

which do not concern us in detail here). For example, suppose

that ADB wished to give RMN some access to the executable

code of his compiler, the operations would proceed as follows:

1. ADB retrieves a capability for .BIN from his

subdirectory

2. ABD passes the capability to RMN

3. RMN can now preserve this capability in his UFD.

After this sequence there would be two preserved

capabilities for the compiler, .BIN in ADB's sub-directory,

and .COMPBIN, say, in RMN's UFD. The use-count in the

SIN-directory will have been incremented in the course of the

new preservation, and even if ADB were to remove .BIN from

his subdirectory RMN's entry would still be valid.

Since directory capabilities are handled uniformly, a

similar sequence of events could have been used to allow RMN

to preserve a capability for the sub-directory, thus allowing

RMN some access to each of the capabilities preserved therein:

1. ADB retrieves .A68C from his UFD

2. ADB passes the capability to RMN

3. RMN preserves this capability in his UFD as .COMP.

In this case RMN's UFD would now contain an entry, .COMP,

which is a preserved directory capability for the same

directory as that retained as .A68C in ADB's UFD. Sub-

directory capabilities may be used in several ways. RMN could

retrieve his capability for .COMP and then present to it simple

names such as .BIN, or he could present to his UFD a two-

part name .COMP.BIN. The dots in a file name separate it out

into a series of components each of which except the last must

name a directory capability in the directory to which it is

presented. The directory capabilities are retrieved and the

residue of the names presented. If the last component of the

name selects a directory capability then the directory is

retrieved for the caller. The implications of this naming

structure for access status are considered later.

Commentary

The system as described so far has features in common

with the fi l ing systems both of UNIX (Ritchie and Thompson)

and CAL-TSS (Lampson and Sturgis). It shares with UNIX

the lack of interest within the directory structure in physical

informat ion about files, and the possibility of having multiple

names for the same thing. The CAP directories, however, are

not pure name-manipula tors as are the UNIX directories.

This is a non- t r iv ia l difference, because the use of directories

to contain access informat ion means that multiple entries for

the same file need not have the same access status. We take

the view that the only things about the fi le which must really

be unique are its position and size (discovered via the SIN-

directory) and its type (kept in the SIN-directory). UNIX has

a single access status for a file, held in a manner which would

be analogous to our keeping the access status in the SIN-

directory. Also UNIX insists that directories form a strict

hierarchy, in order that a reference-count system can work

without losing objects. This point is perhaps better discussed

in relation to CAL-TSS. That system is the closest to ours in

structure, since it has a general naming network as a

consequence of being able arbitrari ly to retain directory

capabilities. CAL however took precautions to prevent the

format ion of 'lost' objects or substructures which we have not

considered necessary. We have been prepared to take the view

that loss of substructures is unusual and that the space can and

should be recovered on system start. This is largely a matter

of taste, and the distinguished entry method used in CAL

could be implemented in CAP without significant system

change. We would probably refuse to allow the distinguished

entry for an object to be deleted while others existed, rather

than allowing it to vanish and ipso facto invalidating al l -

others. (The implementat ion would be easy because the f irst

occasion on which a capability for an object is preserved is

apparent from the SIN-directory, whose manager already has

code specific to this case. The appropriate directory entry

would then be made the distinguished one). There is a

substantial difference in the use made of the directory

structure in the two systems. The concept of a link is entirely

absent in the CAP, which provides for fur ther stages of name

lookup rather than for lookup of a d i f ferent name. The CAP

directory manager does not need to know whether a particular

directory entry is for a file or for another directory; if the

series of directories runs out before the series of name-par ts

then the user is in error and if the name runs out before a fi le

is found then a directory is retrieved.

In practice little use is made of retrieval using extremely

long names directly. Programs retrieve the directories they

will require and use them with, usually, one-par t names. The

visible effects of this are rather similar to those of systems

which have a system notion of 'current directory' or which

have methods of 'presuming' or 'defaulting' the f irst so many

components of a file name. In our case it is entirely up to the

programmer to make what arrangements he sees fit , perhaps

retrieving and holding on to several directories and always

knowing by context which of them to use. Another

characteristic of the CAP system is the access control

techniques used, and to these we now turn.

13

Access Controls

In general, capabilities do not give unrestricted access to

the object to which they refer. A filing system must be able to

retrieve capabilities with the status intended; it us usual to

return an error if that status is null since the appropriate

capabilities would be of little use. We consider first store

capabilities and then directory capabilities.

For mos t store capabilities the rights are a combination

of one or more of 'read', 'write', and 'execute'. if a program

has access to a capability, it may pass to another program some

more restricted access. An assembler, for example, might very

well have RWE access for the segment into which it places a

core-image, but only give RE to the user when assembly is

complete. The author of a character file would have RW

access to it, but would pass only R accss to his readers. This

refinement of access is available in the CAP as a machine

instruction implemented by microprogram. The directory

manager when preserving a capability stores with the name

and SIN the access status of the capability handed in for

preservation, and will not retrieve the capability with any

higher access. For example, if ADB manufactured executable

code of his compiler using RWE access, and so preserved the

capability, he could refine it to RE before passing it to RMN

who could then preserve it with at most that access.

Analogous considerations apply to directories, for

example ADB's new subdirectory. If he passes a capability for

it to RMN he may wish to restrict the operations that RMN

may perform using the directory. For example, he may wish

to prevent RMN from creating new entries, or deleting certain

entries, or overwriting others. The way of achieving this in

most filing systems has been to store in or with the directory a

list of users or of categories of users or of access keys, together

with the rights that being the user or possessing the key

conferred. In the CAP system we have avoided such lists

while producing a system of similar practical function by

including access control information in the directory

capability. Each directory capability specifies some access

status for the directory; this access status consists of five bits

called C,V,X,Y and Z. The 'C' bit allows the creation of

entries in the directory and the other four bits indicate the

access rights obtainable for each preserved capability, as

follows.

Stored in the directory with each preserved capability is

an access matrix this has one row for each of the bits

V,X,Y,Z. Each row contains bits indicating access rights to the

entry. (See the examples below.) If the entry is for a preserved

store capability, the bits in each row of the entry are a

selection from:

D indicates permission to delete the entry

U indicates permission to update the entry (i.e.,

make it contain a different preserved capability)

A - indicates permission to alter the access matrix

for the entry

R,W,E - allow the retrieved form of the capability

to include bits R,W,E respectively

If a program has some access status for a directory (as

specified by a directory-capability), then it can use that

capability to obtain some access to an entry; that access is

restricted to the inclusive 'OR' of each row of the entry's

access matrix for which the corresponding bit (V,X,Y,Z)

appears in the program's access status for the directory. For

example, if the entry .BIN in ADB's new sub-directory has an

access matrix:

D U A R W E

V: 1

X: 1

Y: 1

Z: 1 1

and if ADB has a capability giving him status CXYZ for

the sub-directory then ADB could create new entries, and

would have access URWE to .BIN; he could thus retrieve a

capability for the binary with up to RWE access, or could

make the entry .BIN refer to some different store segment.

Given a directory capability a user may produce a

capability for the same directory but with reduced access by

means of the REFINE instruction, which works upon enter

capabilities just as it does on segment capabilities. ADB, with

his CXYZ capability for the sub-directory could use this

facility to obtain a YZ capability for it; be could then pass

this to RMN. RMN could preserve this capability (if he

wishes), but could in no way obtain a status greater than YZ

for the sub-directory. Such a status prevents RMN from

creating entries in the directory, or from altering the entry

.BIN, but he can obtain up to RWE access to the segment

named by .BIN. Similarly, someone with Z-access to the sub-

directory could obtain at most RE access to .BIN.

If an entry is for a preserved directory capability, exactly

the same rules apply. For example, when ADB created the

sub-directory (by entering a privileged system procedure,

publicly available), he would obtain a capability giving status

CVXYZ for the sub-directory. Suppose he preserved this in

his UFD as .A68C, with access matrix:

D U A C V X Y Z
V: 1
X: 1 1
Y:
z:

14

Then, since ADB has status CVXYZ for his UFD, he has

access ACXYZ to the entry .A68C allowing him to retrieve a

capability with up to CXYZ status for the sub-directory. The

'A' bit has been used here for two purposes. Firstly, ADB has

prevented himself accidentally deleting the entry .A68C by not

including the 'D' or 'U' bits in the access matrix - - he could

subsequently delete or update the entry by f irst altering the

access matrix to include D or U, then deleting or updating the

entry. Secondly, although by altering the access matrix ADB

could give himself V access to the sub-directory, he has

arranged that this access is not at present available. This is an

example of the extremely useful facility that although ADB

has privileges with regard to the sub-directory, he can

temporarily prevent himself f rom exerting those privileges.

A text name presented to a directory capability is a

sequence of components, each of which except the last

specifies a directory in which the next component is to be

looked up. For example, ADB could enter his UFD to retrieve

.A68C.BIN; this means looking up .A68C in the UFD, to f ind

a directory from which .BIN is retrieved. If the set of

preserved capabilities accessible f rom a directory by means of

such multiple look-ups is considered as a directed graph, then

a text name specifies a path through this graph. At each step

in the path, tile access status is multiplied by an access matrix

as described above, ending with some access to the desired

entry in the desired directory. If at some stage on this path

the access status is found to be zero, the request is, of course,

rejected by the directory manager.

The above is a fairly complete description of the

mechanisms and facilities made available by the directory

manager. Certain conventions are adopted as managerial

policy in using the CAP fil ing system, but as with most

conventions, they are not uniformly applied. Capabilit ies for

the UFD's are preserved in one directory, the Master File

Director), (MFD). The MFD is available (with status 'Y') to

the program when logging in; when this program is satisfied of

a user's identity, it retrieves his UFD from the MFD with as

much status as it can, and passes it to the user's command

program. The access matrix in the MFD for most users'

UFD's is:

D U A C V X Y Z
V: 1
X:
Y: 1 1 1 1 1
Z: 1

and most UFD's have a preserved directory-capabil i ty

called .* giving Z-access to the MFD. Thus, in general, a user

can obtain Z-access to other users' UFD's. For example, RMN
r

could retrieve .*.ADB.A68C.BIN to obtain RE access to the

executable code of the compiler. We have already seen that

RMN has another, more privileged path which he could use to

obtain RWE access to the same store segment. Similarly, while

ADB could use the path .*.ADB.A68C to obtain Z-access to

the sub-directory, he could use .A68C to obtain CXYZ, or

could alter the access matrix to allow himself up to CVXYZ.

The MFD thus permits users to name most files by a means

which gives them min imum access. Some files he may not be

able to get to because the lookup stops if it encounters a

directory to which no access is available; also there are files

with no names at all, as ment ioned earlier.

Summary

The CAP fi l ing system has been designed for a specific

capabil i ty-based machine, but although the implementat ion

was made much easier by the peculiarities of the CAP

protection system it would be practicable on any capabil i ty-

based architecture of suff icient generality. The basic step was

to equate the concept of 'file' with that of a preserved

capability; thereafter we attempted to continue the capability

analogy in the structure of the directory system. We have

produced a f i l ing system of considerable generality and

flexibil i ty; indeed the facilities are so general that they are

restricted by convent ion to a manageable subset.

By handling directory capabilities in the same way as

store capabilities we allow not only hierarchical directories

but also shared directories - the structure can form an

arbi t rary directed graph, which may even be cyclic. The access

controls permit giving to others capabilities with restricted or

privileged access to segments or to directories, and allow

privileged users to avoid exerting their privilege.

By allowing dynamic creation of directories, we allow the

manufac ture of directories or of complex structures of

directories separate f rom the main fi l ing system, accessible

only to certain programs (this is used for the password file,

for example).

A feature of the system which is sufficiently unusual that

it may confuse the user with experience elsewhere is that the

access to an object my differ depending on the naming path

used. In particular to present name n to directory d is not

necessarily the same as presenting d.n to some 'root '

directory - the object named is the same, but the access may be

di f ferenL

The filing system has been satisfactory in use. Since all

aspects of its security are enforced by a single system protected

procedure, protected by an ENTER capability f rom outside

interference, we hace a high degree of confidence in it.

Acknowledgements

The CAP Project is supported by the Science Research

Council .

15

References

1. Ritchie, D.M. and Thompson, K. , The UNIX Time-
Sharing System, Comm.ACM, July 1974

2. Lampson.B.W. and Sturgis, H.E. Reflections on an
Operating System Design, Comm.ACM, May 1976

3. Needham, R.M. and Walker, R.D.H. , The CAP Computer
and its Protection System, SOSP6, 1977.

16

