Implementing Portable Desktops:
A New Option and Comparisons

Muthukaruppan Annamalai, Andrew Birrell, Dennis Fetterly, and Ted Wobber

Microsoft Research
One Microsoft Way
Redmond, WA 98052

Microsoft Research Technical Report
MSR-TR-2006-151
October 2006

Abstract. We consider the problem of using a wide variety of computers, dis-
persed geographically and with varied connectivity, while wanting to have each
of them provide you with the same, personalized, desktop environment: oper-
ating system, customizations, applications and your documents. We describe
the existing range of solutions available for this problem, and introduce and
characterize the new “Desktop on a Keychain” system. We explain the trade-
offs that these various systems incur, and the ways in which we believe they are
good and bad. Finally, we explore some of the security issues involved in using
such systems.

1 Introduction

Computing is becoming ubiquitous. An adequately equipped desktop PC can be
bought for $300 (item #3321522 at walmart.com); an Internet connection with 1
Mbit/second download speed can be rented for $12.99/month (“DSL Express” at
sbc.com). The Internet is available at work, at home, at Starbucks; it’s provided to
you on a train from Edinburgh to London, or on a flight from Boston to Frankfurt;
you can even access the Internet on a mountain top via your cell phone.

What’s not readily available to you is your own desktop computing environment:
your documents, your applications, your customizations, your choice of operating
system and patch level. Several attempts have been made recently to remedy this. In
the current paper, we try to characterize this problem area and the other attempts, and
to describe our own experience with one such attempt.

Our goal, in an ideal world, is that whenever you have the use of a computer, and
whenever that computer is connected to the Internet, you have the full power and
customization of your own personal computing environment.

If the only computer that you ever use is your personal laptop, and you carry that
laptop with you everywhere, then you will have achieved our goal. Unfortunately,
you will have done so at a cost: laptops are big, heavy, and fragile. It’s often incon-
venient to provide them with enough power. They are always ergonomically bad, and
a major contributor to problems such as RSI injuries. They are significantly more
expensive than their desktop equivalents, and will fundamentally always be so. They
provide our desired ubiquity of computing, with full personalization, but at a high
cost.

At the other extreme, you can carry nothing with you, but instead rely on the com-
puters that you find scattered around the world. Of course, to do so you need, at a
minimum, some way to access your personal documents. You can carry the docu-
ments with you, for example in a USB flash disk. Or you can keep your documents
on some form of network storage and access them remotely.

Unfortunately, if the only personalization of the computing environment that you
are using is to have your documents available, you will be unhappy. You’ll be most
unhappy if the application you want is unavailable. But you will also be unhappy if
the wrong version of your application is available locally. Finally, to the extent that
you believe in the utility of customizing application behavior (apparently a very
popular feature), you will be unhappy without your own customizations.

We see four major categories of solution to this problem: remote access to your
desktop environment; web-based applications; automatic migration of your desktop
state; and carrying a device that reflects your desktop state. The purpose of this paper
is to compare these solutions, exemplified by some recent work in this area, and to
introduce our prototype device-based solution called “Desktop on a Keychain” which
we refer to as DoK for the remainder of this paper.

2 Remote Access Protocols

This class of solutions is often described as “thin clients”. Your desktop environment,
with your documents, applications and customizations resides permanently on a sin-
gle computer attached to the Internet. When you use some particular local computer,
you run there a client application that implements a networking protocol such as Mi-
crosoft’s “Remote Desktop Access” [15], or Sun’s “Sun Ray” [23], or the open
source “VNC” service [18]. Your only use of the local computer is for display, key-
board, and mouse: all the real work happens on the remote server.

These solutions provide precise ubiquity of your desktop. They also make minimal
demands on the local computer. You must have the appropriate remote access client
installed there, but you care little about any other local software, and the computa-
tional demands on the local computer are slight.

The most obvious issue with these solutions is reliability: you are totally depend-
ent on the continued operation of your remote desktop computer. If the remote com-
puter is professionally managed, as in the typical Sun Ray installation or as when
using Microsoft’s remote desktop to connect to a shared server, this will most likely
be fine. But if you attempt to rely on this solution to connect to a personal computer,
the reliability is likely to be poor: nobody will reboot your desktop (or home) com-
puter for you when you are out of town.

The more serious issue though is performance. With thin client solutions, all of
your interactions involve round-trip communication with the remote server. The pro-
tocols used by these systems are quite smart about screen repaints, and use
sophisticated compression technology to minimize bandwidth requirements, but they
still become unpleasant at less than about 300 Kbits/second [16]. More critically, they
rely on very low latency communication, without which the system will become un-
pleasant to use. For example, Sun’s documentation for Sun Ray says:

“The lower the latency, the better; latencies under 50 milliseconds for round
trip delay are preferred. Latencies up to 150 milliseconds provide usable, if
somewhat sluggish, performance.” [17]

Low latencies are easy to achieve within a local area environment, but they degrade
rapidly as you move to wide area. For example, a network round-trip from a resi-
dence in Los Altos connected to the Internet with DSL, to the adjacent
www.stanford.edu server produces a typical latency of 15 milliseconds. From Los
Altos to www.washington.edu, about 800 miles away, is 31 milliseconds round-trip.
Both would probably give acceptable Sun Ray performance. But if we try
www.mit.edu, requiring a trans-continental link, the round-trip latency increases to
100 milliseconds; transatlantic communication to www.cambridge.ac.uk results in
round-trip latency of 150 milliseconds.

These latency numbers are not going to get much better, ever. The 6300 mile
round-trip to MIT would take 48 milliseconds at 70% of the speed of light, without
any routing delays. And while the routing delays might get better, they are never
going to disappear. (Today there are 13 routers between the California residence and
www.mit.edu.) Consequently, we believe that thin client solutions will never be fully
satisfactory.

3 Web-based Applications

The concept of web-based applications is an appealing alternative to remote access
protocols. As with remote access protocols, the application logic and your documents
and customizations live on a network server. But the fine-grain, low latency user

interaction takes place on the local computer. The local computer interacts with
server-based applications through HTTP transactions.

Doing this naively, with purely static client-side HTML pages rendered by a web
browser, is unsatisfactory except as a fall-back. Static HTML pages provide quite
poor user interaction capabilities, and the latency of an HTTP request and subsequent
page rendering for each state change of the application provides an unacceptable user
experience.

For many years it has been possible to do much better than the naive approach. For
example, in 1997 the Pachyderm prototype [2, 5] provided a web-based email system
that was as user-friendly and interactive as using a local email user agent. This system
offered the added benefit of ubiquitous access, since your email and application state
remained at all times on a network server. Pachyderm did this by using a Java applet
for the fine-grain user interactions and asynchronous HTTP transactions for the trans-
actions with the underlying application on the server. In most situations the network
latency of the application transactions was hidden from the user by appropriate use of
read-ahead and write-behind.

More recently, similar results have been achieved with the technology known as
“AJAX” (for “Asynchronous JavaScript and XML”). AJAX [24] comes from the
confluence of three techniques. First, current web browsers allow scripts to dynami-
cally modify every part of the current web page (by writing to the “innerHTML”
property of any element of the page), and the browsers then dynamically re-render the
page as required. This lets client-side scripts interact with the user without needing
round trips to the network server. Second, current web browsers provide an object
(known for historical reasons as “XMLHTTP”, and originally provided by Microsoft
as an ActiveX control) that lets client-side scripts make arbitrary HTTP requests
without disturbing the contents of the browser window. Third, the client-side script-
ing system and the XMLHTTP object allow scripts to perform operations, including
HTTP requests, asynchronously. This lets the script use read-ahead and write-behind
to hide network latencies.

AJAX technology became popular with the appearance of Google’s Gmail appli-
cation [6] and Google Maps [8]. While Gmail is functionally extremely similar to the
earlier Pachyderm system, the use of AJAX technology makes the client side signifi-
cantly more user friendly.

Overall, it is possible to use web browsers and HTTP in ways that provide high
quality user interaction, hiding most or all of the necessary latency incurred in com-
municating with a server-based application.

So there is some prospect that web-based applications will indeed provide the
ubiquitous access that we desire. They don’t do everything, though. First, web-based
applications don’t provide a general-purpose computing environment. The only
applications you can use are ones that have been specially written for the web-based
situation, with the appropriate separation of user interactions from application state
changes, and appropriate asynchrony to hide network latencies, and careful avoidance

of persistent state on the client side. Second, this approach relies absolutely on the ac-
cessibility of the network server. The server must be always running, and your
network connection must be perfectly reliable; in the absence of either, you will make
no progress whatsoever. As we discuss in Section 8, there are also security concerns
about using a local web browser.

Overall, while web-based applications in general (and AJAX in particular) provide
a promising technique for building new applications, they don’t really meet our cur-
rent goals for ubiquitous access. Also, it remains to be seen how widely applicable
this technology is.

4 Carrying It with You

Considering all of this, we believe that now, and for several years, the most attractive
solution will be to carry most of your data and customizations with you, and execute
your applications on whatever computer is available locally, while relying on network
access and storage as a secondary medium.

Kiosk or Friend’s Computer

Office Computar Metwark

Fig. 1: Desktop on a Keychain System Outline

The underlying enabling technology for this approach is the availability of cheap,
portable, large capacity stable storage, which can be easily, efficiently, and transiently
connected to the local computer (typically with USB 2.0). For example, you can buy
a 5 GByte USB disk (using a 1” magnetic disk) for about $100. You can buy a 1
GByte USB disk built out of flash ROM for $60, or 4 GBytes of flash for about $200.
All of these devices provide end-to-end throughput in the region of 10 MBytes/sec,

plenty for most applications (though as we’ll see later, current mass-market flash-
based devices do have some performance issues). Flash-based devices will be partic-
ularly attractive over the next few years, since the capacity physical devices is widely
predicted to increase at 30% a year or better, at fixed cost, for several years. Consid-
ering these trends, your cell phone might easily become an attractive platform for
storing your portable desktop as you move between computing kiosks.

In Section 4 of this paper we’ll describe our DoK design for using such USB de-
vices, while comparing it with the previously published “Soulpad” design [4]. In Sec-
tion 5 we consider the alternative “Internet Suspend and Resume” design. Section 6
summarizes the performance of our design, and Section 7 considers some perform-
ance issues common to current USB flash disks. Section 8 presents a discussion of
security issues related to the use of kiosk computers in general, and Section 9 con-
cludes.

As with Soulpad, our DoK system aims to give you ubiquitous access to your own
customized operating system, your own customized applications, and your own
documents through a portable USB device that you carry with you everywhere. To
achieve this, the basic usage scenario is that you plug your USB device into the local
computer, and then arrange to execute your own operating system, from the USB de-
vice, on the local machine, as depicted in Figure 1.

This produces an immediate difficulty: even within the moderately well standard-
ized hardware of an x86-based personal computer, there are numerous detailed differ-
ences among the physical devices, requiring differing device drivers within an
executing operating system. The solution to this, with our system and with Soulpad,
is to execute your operating system within a virtual machine monitor. For DoK we
chose to use Microsoft’s VirtualPC product; Soulpad uses VMware. For the present
purposes, the two virtual machine products have very similar characteristics, and very
similar performance.

The use of virtual machines and disks, as opposed to simple, mountable storage,
carries an additional benefit when dealing with flash or portable-disk environments.
Flash, and to some extent portable rotating media, will have lesser capacity than tra-
ditional desktop or network storage units for the foreseeable future. Instantiating a
virtual machine, complete with applications, within a richer, home-base computing
environment should facilitate data transfer to and from the portable system.

4.1 Suspend, Resume, and Boot

The Soulpad and DoK designs differ in how they arrange to execute the virtual ma-
chine. Soulpad boots directly from the USB device, into the Knoppix [13] Linux
distribution. Then VMware is run under Knoppix, and within VMware you resume
your virtual machine execution. Our system uses the local machine’s installed oper-
ating system (Windows, in our case), and runs VirtualPC there, then resumes your

virtual machine session. The main effect of this difference is to trade off self-con-
tainedness for startup performance. Booting Knoppix from scratch takes about a
minute, whereas starting VirtualPC under an existing copy of Windows takes only a
few seconds. There are also secondary effects. The Knoppix approach is somewhat
fragile, depending on having appropriate drivers for all possible hardware that you
might encounter. Alternatively, our approach requires Windows and VirtualPC on the
local machine (or Windows plus the authority to run VirtualPC from the USB
device). See also our later discussion about security issues.

In either system, once the virtual machine monitor is executing, the user experi-
ence is similar to using suspend and resume on a laptop. When preparing to depart
from a physical machine, your virtual machine writes out its state, mostly its DRAM
image, to the USB disk. After arriving at a new physical machine, you tell the virtual
machine to resume by reading its state from the USB disk. As seen by your applica-
tions, nothing much happened: they still access your virtual disk, and the other virtu-
alized devices (such as the network and the display) provided by the virtual machine
software.

With our DoK system, to total time taken to resume your computing environment,
measured from when you plug the USB device into the local computer, is about 30
seconds (for a virtual machine that is currently using 256 Kbytes of DRAM; the
speed varies significantly with memory usage).

This decision, whether to boot from the device or utilize the existing host operat-
ing system, is independent of the other major difference in the designs (discussed
next), namely whether to depend on network resources. With sufficient engineering
effort, the DoK approach can likely be made to boot off flash and Soulpad could be
modified to take advantage of a pre-existing VMM to improve startup performance.

4.2 Reading from Your Virtual Disk

Soulpad uses a straightforward organization for your virtual disk: it’s all on your
USB device, which in the existing prototype is a 2.5” magnetic disk. By contrast, we
were not willing to assume that your USB device had sufficiently large capacity to
carry all of your data with you. We wanted to work with physically tiny USB flash
disks, small enough to literally carry on your keychain. Commonly available USB
disks can hold up to 2 GBytes today, probably about 4 GBytes next year. For many
users, this is too small for the entire operating system plus applications plus docu-
ments.

The basic step in avoiding this issue is to view the USB device as a cache of your
virtual disk contents. The base copy of your virtual disk lives on the Internet, ac-
cessed by a standard remote file protocol (SMB in our case). When the virtual
machine reads from its virtual disk, it first looks for content on the USB device, and
only if the content is not found there does it read from the network. We implement

this primarily by using the “differencing disk” mechanism of VirtualPC. The virtual
disk stored on the USB device contains only those blocks that differ from a disk
image stored remotely on the network file server. We made two enhancements to the
basic differencing disk machinery in order to achieve satisfactory performance.

First, we modified VirtualPC to keep a read cache on the USB device. Whenever
the virtual machine needs to read data from the network disk image, it now records
that data on the USB device, in an auxiliary file there. We manage this cache in a
straightforward LRU manner.

Kicsk of Friend's Camputer Flash Disk
Yaour Computing DRAM Image
Envircnment | ——

1: Wirite Cachia
ri
\irtual PG e
’ Z Read Cache
P — 1
Diisk as saen by
s File Server

3 Kioek Static Disk Images

Fig. 2: Storage Abstractions

Second, we observed that much of the data read from your virtual disk is static and
not at all personal: the binaries of executable programs and libraries. Further, the
local computer has vast disk space available to it. So we posit that any local computer
being used in this manner should be equipped with content similar to the static parts
of your virtual disk content. For example, a corporate IT department could equip all
such public computers with copies of each version of the IT department’s standard
disk images. Or a public kiosk computer could be equipped with copies of the various
popular operating systems are various patch levels. We then modify VirtualPC fur-
ther, so that when it wants to read content from your virtual disk, and the content is
not available from your USB device, then before going to the network the VirtualPC
system checks for appropriate content on the local computer. If the appropriate con-
tent is on the local computer, the read is satisfied from there, without any network
operations. (We could, at that point, cache the data on the USB device, but we chose
not to because of worries about the device’s capacity.)

Finding the “appropriate” content on the local computer is not especially difficult.
We use a content-based addressing scheme similar to several previously discussed in
the literature [9, 17]. We maintain on the USB device, and dynamically as an array
inside VirtualPC, fingerprints of blocks of your virtual disk. More specifically, we
maintain an array of cryptographic hash fingerprints of each 16 KByte chunk of your
logical disk. Similarly, we maintain an auxiliary data structure on the local com-
puter’s disk, containing the fingerprints of the chunks of the disk images stored there.
When a disk read cannot be satisfied from the USB device, we determine the corre-
sponding fingerprint of that chunk of your logical disk (from the DRAM array), and
determine whether a chunk with the appropriate fingerprint exists on the local com-
puter. If so, we read locally and only if there is no such local chunk do we read from
the network file server.

The overall effect of this read design is that the data stored on the USB device is
dominantly a cache, containing the working set of your personal data, including any
application configuration information. Static data, such as operating system, libraries,
programs and templates, mostly gets read from the local computer. The only network
read operations are for personal data not in your existing working set, and not avail-
able in the local static disk images.

A: Chunk number to Fingerprint map (for entire disk) DO Chunk number to Fingerprint map (for entire disk)
] 1 2 3 4
FP3|FP‘I| |Fps| | | FP:!|FP‘I| |FP'.5| | |
B: Write Cache, &= a log (for each modified sactor) E: Write Ceche hash table
n 3 Data for sector #3 3 Location of sector #3 in flash
el | 10 Data for sector #10 10 Location of sector #10 in flash
m2 | 5 Data for sector #5] Location of sector #5 in fiash
w3
C: Read Cache (chunka) F: Fingerprint to Read Cache hash table
17 Data for chunk #17 FRiT Location af chunk #17 in flash
248 Diata for chunk #28 FF28 Location af chunk #28 in flash
11 Data for chunk#11 FP11 Location af chunk #11 in flash
Fig. 3: Data Structures on the USB Fig. 4: Volatile Data Structures

Notice that we make no assumptions about any sort of “correctness” of the local
images. If a chunk exists locally with the correct fingerprint, it necessarily contains
the correct data, the same as we would have obtained by reading from your virtual
disk over the network. At worst, if the data structure describing the fingerprints of the
local computer lies, our performance degrades by needlessly reading data from the
local computer, then discarding it because its fingerprint is wrong.

4.3 Writing to the Virtual Disk

Writes are comparatively simple. When VirtualPC writes to your virtual disk, we
write the data to the USB device. Sometime later, at your convenience (or when the
USB device is becoming full) the new content is written back to the network disk
image. Of course, this write-behind cache is the first place that we look for content
when reading from your virtual disk.

Figure 2 shows the storage abstractions involved in accessing your logical disk.
Figure 3 summarizes the data structures kept on your USB device, and Figure 4
summarizes the volatile data structures that we use while running VirtualPC.

One auxiliary benefit of the write behind cache is that your disk image on the file
server always contains some previous consistent version of your disk. If you lose the
USB device, or it breaks, you can recover a previous state by starting over with the
network disk image. Finally, users have a backup system that requires no manual op-
erations.

As implemented in our prototype, we flush the entire write-behind cache to the
network disk image as a single operation. However, it would also be appealing to
retain the order of writes, so that the network disk image would go through the same
intermediate states as your overall virtual disk did, allowing you to back up some ar-
bitrary point in your history.

4.4 Contrast with Soulpad

As we discussed in Section 4.1, one difference between the Soulpad and DoK sys-
tems is the way in which they start up on arrival at a new local computer. Soulpad
boots Knoppix from the USB device, and our system runs VirtualPC under the local
computer’s own operating system. While this changes details of the system require-
ments and initial start-up behavior, it is not fundamental.

The fundamental difference between the systems is that DoK takes advantage of,
and relies upon, the availability of network file storage. This has several ramifica-
tions, some good and some bad.

On the bad side, if you don’t have network connectivity, or if the network file
server is for some other reason unavailable, our system does not function. (We could
function somewhat purely from the contents cached on the USB device plus what we
find on the local computer, but succeeding in this approach is the same as the long
term research problem of detached operation explored by systems such as Coda [12].
We have chosen not to explore that direction.) Our belief, based on our observation
of current industry trends, is that network connectivity is, or soon will be, sufficient
to make the smaller form factor of USB devices attractive in many scenarios. On the
other hand, we have no illusions that our solution would work as well as Soulpad
where connectivity is limited or non-existent as in much of the developing world.

10

On the good side, with DoK your portable computing environment is not limited to
the capacity of your portable USB device. Opinions may vary about how large a port-
able device can conveniently be. If you are willing to transport a 2.5” magnetic disk,
then today you can transport 100 GBytes and thus pretty much all of your active per-
sonal environment. We do not believe that most people would be happy with a 5
ounce device, 5 inches by 3 inches, in their pocket. Wireless-enabled personal server
devices containing rotating media such as those described by Want et al. [27] elimi-
nate the need for a physical connection, but create questions concerning battery life
and weight.

If we restrict the choice of devices to flash-based media, or miniature magnetic
disks, we find that today’s maximum capacities are in the region of 4 GBytes. There
is no prospect in the next few years that the capacities of those devices will grow
faster than users’ appetites for data storage. Thus we remain convinced that a cache-
based approach is attractive.

When flash disks reach 16 GBytes in capacity, there will be ample space to sup-
port a substantial environment without connecting to a network. We can expect 16
GByte flash devices to reach the price-to-performance “sweet spot” currently occu-
pied by 1 GByte devices in perhaps 4-5 years. However, even with a system volume
running entirely on local flash, it might remain attractive to maintain persistently-
cached access to alternate network volumes in the fashion described above.

5 Migrating Over the Internet

Alternative designs are possible if you are willing to posit a global infrastructure of
cooperating network storage servers. In their Internet Suspend/Resume (ISR) system,
M. Satyananyanan et al. [22] propose an environment where desktop state migrates so
as to give good local performance wherever a user might login. (Sapuntzakis pro-
poses a related design [21] for which the following discussion is also relevant.) As
with our DoK and system and Soulpad, ISR is a virtual-machine-based design. Users
run their computations in a virtual machine. The virtual machine can be suspended.
This implies that all state, both virtual memory and disk, is saved into a distributed
file system. Such computations can be later resumed, possibly at distant locations.

In the baseline ISR design, the user’s memory and disk image must be made avail-
able locally in order for a user session to proceed. In-memory caching is not suffi-
cient, so the ISR storage layer uses the local disk for caching, for example, by using
the Coda file system [12]. To compensate for Coda’s full-file caching policy, virtual
disks and virtual memory images are subdivided into smaller (128K) chunks and
these chunks are stored as individual Coda files. Coda supports trickle reintegration
of cached state to the home server, but even so, the dominant cost of suspend and re-
sume in the un-optimized design comes from the network file system latency.

11

ISR makes use of two techniques to improve resume performance. First, the sys-
tem can proactively cache a user’s state at a likely destination. This, of course,
requires some way of predicting that user’s future itinerary. Second, ISR can also
make use of demand-fetch caching. This can produce very fast resume latencies in
some cases, but performance is strongly impacted by workload and network band-
width. There is no similar trick to improve suspend performance. The user can only
opt to wait for changes to be flushed to the network, or to risk allowing these to take
place in background.

Portable storage devices (such as the USB flash disks we have been considering)
can be used to further optimize the ISR scheme. Such devices are treated as look-
aside caches. The distributed storage layer is modified to first provide a hash for each
needed chunk in lieu of the data. Now any attached device can offer up the chunk if
it holds one with the specified hash value. If the chunk is not available, it can be
fetched from the distributed storage system as usual. Portable devices that support
writing can be used to cache a copy of the virtual memory image at suspend time,
thereby improving resume performance in the presence of the target device. The ISR
authors don’t propose any more aggressive role for use of portable disks in caching
writes.

DoK and ISR occupy a similar portion of the design space, however there are im-
portant differences. First, ISR writes user data to the local disk, whereas DoK only
writes to the portable device and the network. Although the user data ISR writes lo-
cally is in fact encrypted, the DoK system is designed to avoid writing any persistent
state to the local machine. Second, ISR treats portable devices purely as caches,
while DoK stores persistent state there that is not necessarily stored elsewhere. There
is a fundamental design tradeoff here. If the portable device can store persistent state,
then recent writes can be carried with the user rather than waiting for them to be
flushed back to the distributed storage system. This yields significantly improved be-
havior when network bandwidth is limited. As an extreme example, imagine an
airliner with wireless Internet connectivity and built-in computer kiosks at the seats.
Flushing all writes with poor network connectivity (for example, on final approach)
might be a severe constraint. Writes stored to removable and portable storage would
most likely be preferable. Note that writes stored temporarily on a USB key can be
efficiently migrated back to distributed storage when good network connectivity is
available. The obvious downside is that the portable device can be lost or damaged in
the interim. Finally, widespread kiosk deployment based on a distributed storage
system like Coda requires a substantial management and trust infrastructure to handle
pre-fetch and write-back, for example a standard platform and a federation of con-
tributing administrative domains. In contrast, DoK needs little mechanism from the
local operating system and management infrastructure other than a VMM and con-
nectivity to your file server.

12

6 Desktop on a Keychain Benchmarks

There are several potential performance issues with the DoK design: the cost of using
a virtual machine, the cost of transferring data via USB, the cost of our look-aside ar-
rangements for detecting usable chunks on the local computer, and the cost of
network data transfers. To evaluate the impact of these, we measured our perform-
ance using the SYSmark 2004 benchmark [1].

We ran the benchmark on a 3.2 GHz Pentium 4 PC equipped with 1 GByte of real
memory. The local computer’s operating system was Windows XP SP2. We used the
currently shipping VirtualPC SP1 product, except that we replaced the file “vmm.sys”
with the corresponding one from the Virtual Server SP1 product, because doing so
fixes a performance bug in VirtualPC SP1’s virtual memory implementation. The
DoK system itself is a modification to the source code of the VirtualPC SP1 product.

We tested several configurations:

e Raw measures the benchmark running natively on the local computer, with
its local hard disk. For this test we restricted the computer to using 512
MBytes of real memory.

e VPC-Local measures the benchmark running directly under VirtualPC, using
a virtual disk stored directly on the local computer’s hard disk, not using any
of the DoK system. The virtual machine was configured to use 512 MBytes
of memory; the real machine had its full 1 GByte.

e VPC-USB is the same as VPC-Local, except that the virtual disk resides on a
USB 3.5” magnetic disk.

e DOK-USB-A measures the benchmark running inside the actual DoK system,
and is otherwise the same as VPC-USB.

e Finally, DoK-USB-B replaces the 3.5” magnetic disk of DoK-USB-A with a

4 GByte USB flash disk.
Test Case Score Slowdown
Raw 141 1.00
VPC-Local 125 1.13
VPC-USB 114 1.24
DoK-USB-A 116 1.22
DoK-USB-B 105 1.34

From these raw numbers, we can derive more interesting summaries:
e The penalty for using VirtualPC (with the vmm.sys fix) is 13% (1.13/1.00),

in this benchmark.
e The penalty for using USB instead of IDE is 10% (1.24/1.13).

13

e The DoK modifications to VirtualPC, including the read cache, the write-
behind cache, and the look-aside to the local computer, produce no
performance degradation (comparing DoK-USB-A with VPC-USB). Also, in
this benchmark, delays caused by accessing the network file server had no
performance impact. The slight speed-up seen here is probably caused by the
look-aside reads from the local IDE disk being faster than reads from the
USB magnetic disk.

e Using this particular flash-based USB disk is 10% slower than using a 3.5"
magnetic USB disk (1.34/1.22).

The bottom line is to compare DoK-USB-B with Raw, which results in an overall
34% penalty for using the full DoK system with a USB flash disk.

In conclusion, we believe that these performance numbers show the viability of
this approach. Using a virtual machine, using a USB disk, and relying on a network
file server do not have excessive performance penalties.

The astute reader will have noticed that we haven’t specified which USB flash
disk we used in these tests. This is because of some generic performance issues with
flash-based disks, which we explore in the next section.

7 USB Flash Disk Performance

When we first starting using the DoK system, we noticed that in some situations the
system seemed ran surprisingly slowly. These situations all seemed to be related to
writing to the USB flash disk, and the performance of the disk in these situations
seemed to be inexplicably slow. Since the effect applies to all of the mass-market
USB flash disks that we have tested, and since it will degrade any use of such devices
as a system (boot) disk, we are reporting the result here.

Mass market USB flash disks, typically referred to as “keychain” disks, typically
export disk-block-level I/O interfaces. These devices contain on-board flash memory
that is accessed through a specialized controller chip. The controller implements a
flash translation layer that presents the USB mass storage class protocol [24] to the
host computer. The translation layer is also responsible for managing writes and era-
sures so as to balance wear over the flash chip. Devices of this class typically adver-
tise comparable performance characteristics: read throughput of 8 to 16 MBytes per
second, and write throughput slightly slower at about 6 to 12 MBytes per second (de-
pending on price). Since these throughput numbers are not a lot slower than low-end
magnetic disks, we initially assumed this performance would be acceptable.

Write latency associated with erasure of flash memory has been understood for
some time [6]. Log-structured file systems [19, 28] can be used to optimize flash era-
sure behavior and to promote wear-leveling. However LFS deployment is not com-
monplace in most computing environments and this constitutes a hindrance to the

14

portability of USB flash disks. We, therefore, opted to use conventional file systems
and wound up investigating flash-translation-layer performance.

After we observed our system running unexpectedly slowly, we organized some
micro-benchmarks for our USB flash disks. These benchmarks, running under Win-
dows, called the Win32 file system API to perform reads or various lengths, writes of
various lengths, and to measure these either sequentially or as random access. The re-
sults immediately showed that sequential reads, sequential writes, and random access
reads all achieved the advertised throughput speeds, regardless of transfer size. But
random access writes with moderate transfer sizes (e.g., 4 KBytes) consistently in-
curred an average latency of about 22 milliseconds, producing a net throughput of
about 190 KBytes per second.

We next pursued the question of where this latency arose, since there is a lot of
software between our test program and the underlying flash chip. The guilt became
more localized after we used a USB analyzer, and confirmed that at the level of the
USB mass storage protocol, the 4 KByte write requests were indeed taking an aver-
age of 22 milliseconds to complete.

We believe that the explanation for this comes from the difference between the
“disk” abstraction, and the reality of the functionality of NAND flash chips. A disk is
addressed linearly by logical block address (“LBA”). The write operation provides
new data for a given LBA, and the disk ensures this data will be returned when read-
ing that LBA. NAND flash provides memory linearly addresses by “page number”,
but with the constraint that each page can be written only once. To permit rewriting
of a page, a separate erase operation is needed, which erases a “block”. The most
commonly used 1 GByte flash chip is the KOW8GO8UIM from Samsung [19]. With
the Samsung chips, the page size is 2 KBytes and the block size is 128 KBytes. Fur-
ther, each block is only guaranteed to be erasable 100,000 times in the life of the
chip.

To compensate for this, when the controller on the flash disk is asked to write new
contents into some LBA, it must write the data to a newly erased page in the flash
chip, at a different page number from the one use previously for this LBA. Conse-
quently, the controller must maintain a table mapping LBA to the appropriate current
flash page number.

If this table were at the granularity of one entry per LBA, there would be no per-
formance impact. However, in that case the table for a 1 GByte flash disk would have
2 million entries, each entry requiring 21 bits. This exceeds the on-chip memory of
controller chips, so the device would require a DRAM chip (and memory controller),
significantly increasing its price. Alternatively, if the granularity of this table is, for
example, quanta of 128 KBytes, then the table would require only 8192 entries and
would fit on-chip. We believe this is approximately what is happening in the current
mass-market USB flash disks (although there is a lot of variability in these perform-
ance numbers, so the situation is undoubtedly more complex than this analysis).

15

Now consider the performance impact of this granularity. If the disk is asked to
rewrite the contents of a random LBA, an entry in this table must be modified,
changing the location of an entire 128 KBytes of data. Consequently, the controller
must now read that data from its old location on the flash chip, modify the appropri-
ate contents, and write it into its new location. It turns out that this read-modify-write
operation takes roughly 22 milliseconds on current flash chips, thus explaining our
performance observation.

This behavior does not affect sequential write performance, since the sequential
LBA contents can be written sequentially to a single erased flash block, at full speed.
And in the primary application of these devices, storing photographs and other large
files, random access performance is not important. But when used as the system drive
for an operating system, the performance degradation is important. In addition, this
read-modify-write behavior increases the frequency with which flash blocks must be
erased, causing the total lifetime of the flash chip to be reduced.

This problem is solvable by building slightly more complex devices with the req-
uisitt DRAM. And such devices actually exist. For our benchmarking, reported
above, we purchased a flash-based disk (M-Systems model #FFD-25-UATA-4096-N-
A [14]) which was originally intended as a replacement for a 2.5"” IDE magnetic disk.
We placed this disk in an external USB disk enclosure. This disk, designed primarily
for the military market (and priced accordingly), does indeed have the performance
we initially expected. There is no penalty for random access; it behaves exactly like a
magnetic disk with a seek time of 0.

The write access patterns of your primary system disk are not at all like the bulk
file transfer pattern for which the current mass-market flash disks are intended. It
seems clear that the random access performance problem must be fixed if USB flash
disks are to be used extensively as primary system disks, despite the inevitable price
increase that will result. For this reason we view the performance on such a device as
the most reasonable measure of our system.

Unfortunately, significant published material on the design and performance of
commercial flash-translation-layer firmware is hard to find.. As a gedanken experi-
ment, we created a reasonably complete design for such a system, with the appropri-
ate structures to permit full random access write performance, while retaining correct
recovery from power failures and from bad blocks, and with acceptable start-up time
at power on even at large capacities. The details are beyond the scope of this paper,
but are available in a separate technical report [3]. A multi-platform LFS implementa-
tion specifically for USB flash disks might offer similar benefits, although such a
solution would be difficult to implement entirely in device firmware.

16

8 Security

Walking up to a computer that you don’t know, and there resuming your personal
desktop environment, is fundamentally a risky thing to do, regardless of which of the
systems we’ve been discussing you use. The risks include, for example, the presence
of a hardware keystroke logger attached to the keyboard [10], which might record
your bank account’s password as you type it. Even if you try to boot the computer
from your own software (as with Soulpad), you have no guarantee whether that’s
what is really happening. The screen that looks so much like the BIOS booting from
your USB device might be produced by the malware that just booted from the infil-
trated hard disk.

There are known technical solutions to this problem [26], but none of them have
been implemented in widely available hardware. The solutions start with a trusted
secret key embedded in the computer’s processor. Then by means of certificates
issued by authorities that you choose to trust, the local computer hardware and its
operating system and its applications can prove that they haven’t been corrupted or
subverted, and nor have their peripherals. Equipped with such certificates, the local
computer could, for example, prove its trustworthiness to your network file server,
and the file server could then tell the local computer to display an image known only
to you and the server. Assured by this, you would reasonably insert your USB device,
or resume your ISR session, or contact your web-based applications. But we repeat:
these solutions are not available today.

Without such technical solutions, your decision to use an unknown computer is a
judgment call. You must make this judgment in much the same that you decide
whether to insert your ATM card into a slot and type your PIN. It’s based on your
opinion of the environment where you found the computer and your relationship with
the apparent provider of the computer. It is also based on probabilities, and on the
actual value at stake. If the computer is in your work environment or at home, you are
quite safe. If it is secured in an airport departure lounge, you are probably safe. At the
other extreme, any non-trivial use of an unknown computer in an arbitrary location in
a strange country will remain risky for the foreseeable future.

To be honest the analogy with an ATM is not quite accurate. A large part of your
confidence in the ATM comes from the limitation of your liability (at least, under
U.S. law — it is much less limited in most other countries). At present there is no such
limitation on what could happen with a subverted computer kiosk. Further, the theft
of data can be much more difficult to detect than the theft of money. We see no pros-
pect of this situation improving.

If you are using Soulpad, or DoK, another threat is theft of your USB device.
Fortunately, this at least is amenable to straightforward cryptographic solutions. For
example, you can buy today USB flash disks with on-board encryption hardware
[11]. The data in these devices is encrypted before being written to the flash chip. The

17

encryption key is provided by you dynamically (by typing it into the local computer
and having the computer pass it to the USB device) after you have assured yourself of
the (sufficient) safety of the local computer. If you lose such a device your only
worry is the missing data, not the risk of it being stolen.

Despite the above similarities of the security risks incurred with these systems, the
trusted computing base (TCB) for these systems differs. All of them trust the local
computer’s hardware. Soulpad is close to a minimal TCB, since it boots the entire
system from the USB device. Nevertheless, Soulpad still relies that this boot process
is being undertaken by a trustworthy BIOS. DoK relies on the local computer’s oper-
ating system and copy of VirtualPC. This could be ameliorated by using a copy of
VirtualPC from the USB device. We could of course use the same Knoppix-based
approach as Soulpad, with the same penalty in start-up time and the same dependency
on having appropriate drivers. ISR depends heavily on trusting the local computer’s
operating system, as do web-based applications and thin clients. Thin clients have the
advantage that the local operating system can be reduced to only what is required for
the client protocol (as with Sun Ray), and similarly AJAX style web-based applica-
tions need only enough operating system to run a full function web browser (plus the
browser itself)

9 Conclusions

The increasing ubiquity of personal computers and Internet access leads to an in-
creasing problem in accessing your personal desktop environment: system, customi-
zations, preferences and documents.

There is a wide range of potential solutions to this problem, each with its own set
of trade-offs. Thin clients work very well in tightly coupled low latency environ-
ments, but are generally unacceptable if wider area use. Web-based applications us-
ing technology such as AJAX work well in most situations, but depend critically on
building from scratch the appropriate applications. It is also not clear how widely ap-
plicable (in terms of application coverage) the web-based solution is. Solutions that
rely entirely on migrating your state across the Internet perform well only when con-
nectivity bandwidth is very good, or when it is easy to predict where the state will be
needed. Solutions that take advantage of small portable USB mass storage devices
seem to form a good compromise, leveraging the rapidly increasing capacity of such
devices.

Across all of these solutions, there are security issues revolving around trust of the
local computer. These are in general intractable without complete bottom-up security
based on secrets embedded in hardware and a trusted certificate infrastructure, but in
reality there are many situations where an acceptable level of trust can be achieved.

18

Overall, we believe that ubiquitous access of this form is arriving. Solutions based
on carrying a mass storage device seem most attractive for pre-existing applications,
whereas web-based solutions seem most attractive when suitable new applications
can be constructed. Moreover, among the options for portable mass storage, it is im-
portant to consider not only the form factor of the portable device but also the
relevance of using network resources to augment storage capacity.

References

1. BAPCO. An Overview of SYSmark 2004.
http://www.bapco.com/techdocs/SY Smark2004 WhitePaper.pdf.

2. A.Birrell, S. Perl, M. Schroeder, T. Wobber. Pachyderm: A Web-based Application for
Email and News. Powerpoint slides, http://birrell.org/andrew/talks/pachyderm.pdf, 1997.

3. A.Birrell, M. Isard, C. Thacker, T. Wobber. A Design for High Performance Flash Disks,
Technical Report, MSR-TR-2005-176, Microsoft Research, December 2005.

4. R. Céaceres, C. Carter, C. Narayanaswami, and M. Raghunath. Reincarnating PCs with
Portable SoulPads. In Proceedings of the 3rd International Conference on Mobile
Systems, Applications, and Services, pp. 65-78.

5. Digital Equipment Corporation, Pachyderm,
http://web.archive.org/web/19980123212517/http://www.research.digital.com/SRC/pachy
derm/, 1997.

6. F.Douglis, R. Céceres, F. Kaashoek, K. Li, B. Marsh and J. Tauber, Storage Alternatives
for Mobile Computers, In Proceedings of 1st Symposium on Operating Systems Design
and Implementation (OSDI), November 1994.

7. Google Inc. Gmail Home Page. http://www.gmail.com.

Google Inc. Google Maps Home Page. http://maps.google.com/maps.

9. J. Hollingsworth and E. Miller. Using content-derived names for configuration
management. In Proceedings of the 1997 ACM Symposium on Software Reusability,
Boston, May 1997.

10. KeyGhost Ltd. KeyGhost: Record Keystrokes in a Flash. http:/www.keyghost.com/.

11. Kingston Technology. Data Traveller Elite.
http://www .kingston.com/digitalmedia/dt_elite.asp.

12. J. Kistler, M. Satyanarayanan. Disconnected operation in the Coda file system. ACM
Transactions on Computer Systems 10 (1) (1992).

13. Knoppix. Home page. http://www.knoppix.net.

14. M-Systems Inc. http://www.m-sys.com/site/en-
US/Products/IDESCSIFFD/IDESCSIFFD/Products /IDE_Products/FFD 25 Ultra ATA.
htm

15. Microsoft Corporation. Working Remotely with Windows XP.
http://www.microsoft.com/windowsxp/using/mobility/default. mspx.

16. M. Oliver, R. Doraisamy, B. Doolittle, K. Peacock, G. Wall, G. Sloane. Sun Ray™
Deployment on Shared Networks. Sun Blueprints OnLine,
http://www.sun.com/blueprints/0204/817-5490.pdf, February 2004.

17. S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In Proceedings of
First USENIX conference on File and Storage Technologies, Monterey, CA, 2002.

oo

19

http://www.bapco.com/techdocs/SYSmark2004WhitePaper.pdf
http://birrell.org/andrew/talks/pachyderm.pdf
http://web.archive.org/web/19980123212517/http://www.research.digital.com/SRC/pachyderm/
http://web.archive.org/web/19980123212517/http://www.research.digital.com/SRC/pachyderm/
http://www.gmail.com/
http://maps.google.com/maps
http://www.keyghost.com/
http://www.kingston.com/digitalmedia/dt_elite.asp
http://www.knoppix.net/
http://www.m-sys.com/site/en-US/Products/IDESCSIFFD/IDESCSIFFD/Products_/IDE_Products/FFD_25_Ultra_ATA.htm
http://www.m-sys.com/site/en-US/Products/IDESCSIFFD/IDESCSIFFD/Products_/IDE_Products/FFD_25_Ultra_ATA.htm
http://www.m-sys.com/site/en-US/Products/IDESCSIFFD/IDESCSIFFD/Products_/IDE_Products/FFD_25_Ultra_ATA.htm
http://www.microsoft.com/windowsxp/using/mobility/default.mspx
http://www.sun.com/blueprints/0204/817-5490.pdf

18.
19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Real VNC. Home page. http:/www.realvne.com.

M. Rosenblum and J. Ousterhout. The Design and Implementation of a Log-Structured
File System. ACM Transactions on Computer Systems, 10 (1) pp. 26-52.

Samsung Electronics. 512M x 8Bit/ QG x 8 Bit NAND Flash Memory.
K9W8G081M/K9K4G08UOM Flash Memory Datasheet.

C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, and M. Rosenblum. Optimizing
the Migration of Virtual Computers. In Proceedings of the 5" Symposium on Operating
Systems Design and Implementation (OSDI), December 2002, pp. 377-390.

M. Satyanarayanan, M. Kozuch, C.Helfrich, D. O’Hallaron. Toward seamless mobility
on pervasive hardware. Pervasive and Mobile Computing 1 (2005) 157-189, Elsevier.
Sun Microsystems. Sun Ray Overview (White Paper).
http://www.sun.com/sunray/techinfo/New_SR_WP_12_04.pdf.

USB Implementers Forum. Universal Serial Bus Mass Storage Class Specification
Overview, Revision 1.2.
http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.pdf, June 2003.
Wikipedia. Ajax (programming). http://en.wikipedia.org/wiki/AJAX.

Trusted Computing Group. TCG Specification Architecture Overview. Specification
Revision 1.2, April 2004.

R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and J. Light. The Personal
Server: Changing the Way We Think about Ubiquitous Computing. In Proceedings of
UbiComp 2002, pp. 194-209.

D. Woodhouse. JFFS: The Journalling Flash File System. Red Hat, Inc.
http://sourceware.org/jffs2/jffs2-html/.

20

http://www.realvnc.com/
http://www.sun.com/sunray/techinfo/New_SR_WP_12_04.pdf
http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.pdf
http://en.wikipedia.org/wiki/AJAX
http://sourceware.org/jffs2/jffs2-html/

	1 Introduction
	2 Remote Access Protocols
	3 Web-based Applications
	4 Carrying It with You
	4.1 Suspend, Resume, and Boot
	4.2 Reading from Your Virtual Disk
	4.3 Writing to the Virtual Disk
	4.4 Contrast with Soulpad

	5 Migrating Over the Internet
	6 Desktop on a Keychain Benchmarks
	7 USB Flash Disk Performance
	8 Security
	9 Conclusions

