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issues in any replicated data stor- 
age system are the semantic level of replication and 
the granularity of replication. 

By the semantic level of replication, we mean the 
lowest level of abstraction within the system’s imple- 
mentation such that the data objects stored in the 
replicas appear t o  be equal when viewed at  this level. 
A system that presents an external interface at a par- 
ticular semantic level is fre6 in its internal implemen- 
tation to replicate its data at that same semantic level 
or at  any lower level that it chooses. For example, 
in a source code control system providing versioned 
files, the replication internally could be at  the level 
of versioned files, but it could also be at  the level 
of non-versioned files (with a suitable mapping from 
versioned file names to  non-versioned), at  the level 
of unnamed files, or even at the level of an array of 
logical disk blocks. 

By the granularity of replication, we mean the unit 
of data that may be replicated independently of other 
units of data. For a replicated file system, examples 
of a unit of data include a file, a record within a file, 
a directory and its children, a logical volume (say, a 
Unix file system), or a collection of logical volumes 
that are co-located in the same physical resources. 
The design choices for granularity are constrained by 
the choice for the semantic level of replication: the 
granularity of replication may be no finer than the 
granularity of data objects provided by the semantic 
level. In general, the higher the semantic level, the 
more choices there are for the granularity of replica- 
tion. 

This paper examines the choices for semantic level 
and granularity that have been made in the Echo dis- 
tributed file system [3, 61. The primary goals of Echo 
are to explore issues of scaling, availability, and per- 
formance. For scaling and uniformity of access, Echo 
provides a global, hierarchical name space. Repli- 
cation is employed for availability. Performance is 

achieved by distributed caching on clients, and by 
using a log on the file server to reduce disk seeks [2]. 
The log also records information about updates that 
are in progress, and this information is used during 
crash recovery to bring all replicas into agreement. 

The Echo hierarchical name space is structured as 
a collection of subtrees, called Echo Volumes, that 
are glued together to form a single name space. Each 
Echo Volume may be implemented by a different ser- 
vice, for example, a name service or a file service [3]. 
In the remainder of this paper, we discuss only the 
file service component of Echo. 

Aspects of Echo Replication 
This section presents a summary of those aspects of 
the Echo replication algorithm that are needed for 
understanding the rest of the paper; other aspects 
are omitted. 

In Echo, data storage is implemented by server 
computers and disks. As independent choices, an 
Echo hardware configuration may have replicated 
disks and/or multiple server computers. In general, 
disks are multi-ported and connected to several server 
computers. Each such disk has a multi-port arbiter, 
which recognizes at  most one connected server com- 
puter as its owner at a time. Ownership is subject 
to timeout. Echo can also make use of singleported 
disks; in this case, software on the single physically- 
connected server simulates the multi-port arbiter, and 
other logically-connected server computers access the 
disk via this server over the network. 

Echo employs a distributed caching algorithm be- 
tween clients and servers, in which servers keep track 
of which clients have cached what files and directories 
[4, 5 ,  71. This caching information is replicated in the 
main memories of the server computers. 

The server computers are organized in a primary- 
secondaries scheme. First, the server computers com- 
municate amongst themselves to choose a poten- 
tial primary who has up-to-date caching information. 
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Since server computers may be partitioned, this step 
can produce more than one potential primary. Next, 
each potential primary tries to claim ownership of a 
majority of the disks. If a potential primary succeeds 
in claiming a majority of the disks, it becomes the 
real primary. 

Because disk ownership is subject to timeout, the 
current owner must refresh its ownership periodically. 
After a failure of the primary, a secondary must wait 
for the disk ownership timeouts to expire before it can 
become the new primary. The waiting is required in 
order to guarantee that there is never more than one 
primary. Thus, the ability to  fail over quickly is de- 
pendent upon short ownership timeouts with frequent 
refresh. 

During service, all client reads and updates are sent 
to the primary. For client updates, the primary writes 
to all disks that are up and in communication. For 
client reads, only one disk needs to be read, since 
there is at most one primary and all update traffic 
goes through it. 

Semantic Level of Replication 

In designing Echo, we considered two alternatives for 
the semantic level of replication, (1) at the level of 
files and directories, and (2) at the level of an array 
of logical disk blocks. Both have their advantages and 
disadvantages; we ultimately chose (2). 

An advantage of replicating at the semantic level of 
files and directories is that it could facilitate reading 
from secondaries for load balancing (since each sec- 
ondary understands how to navigate files and directo- 
ries). Another advantage is that, in principle, the rep- 
resentation of files and directories in terms of lower- 
level disk blocks can be different on each replica, 
which could be important in an environment of het- 
erogeneous servers or for smooth software evolution. 
A potential disadvantage is that, in principle, bring- 
ing the replicas into agreement during crash recovery 
requires that each file system operation have a cor- 
responding undo operation, which is hard for delete 
operations. However, there is a special-case trick that 
avoids the need for general undo: all operands of the 
original operation may be copied from another replica 
that did not perform the operation. 

The advantages of replicating at the semantic level 
of an array of logical disk blocks are as follows. 
It is a good match for multi-ported disk hardware: 
the primary writes directly to all disks without go- 
ing through the secondaries, which therefore do not 
have to be up. The design accommodates schemes 
for redundant arrays of inexpensive disks (RAID) 
in which error-correcting codes are implemented at 

the block level [9]. RAID has a cost advantage over 
fully mirrored disks in that it provides an interme- 
diate cost point between no redundancy and double 
redundancy. The log can use new-value logging, in 
which the information logged for an update is sim- 
ply a sequence of records, each giving the new value 
for a byte range within a logical block. We believe 
that new-value logging is simpler to program and get 
right than operational logging. For example, with 
new-value logging, it is trivial to ensure that redo is 
idempotent, whereas with operational logging, redo 
must figure out which disk pages already have the 
update and and which do not. This requires care- 
ful programming and additional machinery, such as 
recording a log sequence number on each disk page. 
Another advantage is that the log is a single, common 
log that is replicated byte-for-byte on all disks, just 
like ordinary data, which makes the log less vulnera- 
ble to bad-disk-block errors. Whereas with (1) above, 
each replica requires its own distinct log. 

Granularity of Replication 

Replication schemes that provide strict consistency 
between replicas (i.e., one-copy serializability [l]) and 
that are resilient against communicat.ion partitions 
require the use of quorum algorithms. Schemes that 
choose a primary synchronization site and that main- 
tain this primary’s quorum using keep-alives (like 
Echo) have an ongoing expense even after entering 
service (The keep-alives could be done lazily, say, only 
if there is a client read or update request, but this 
still represents an expense.). Therefore, it is advan- 
tageous to employ some kind of grouping of related 
data, and carry out a single election for a whole group 
of data rather than many separate elections for indi- 
vidual data items. That is, the granularity of replica- 
tion should be fairly large. We believe that file-level 
granularity is too fine, since it requires too many in- 
stances of the election algorithm. 

In Echo, the granularity of replication is an en- 
tire array of logical disk blocks. A replica, called an 
EchoDiskRep, is configured from one or more physi- 
cal disks. Two or more EchoDiskReps are combined 
to form an EchoDisk, which provides a replicated ar- 
ray of logical blocks to the next layer up. In the 
election, the potential primary tries to  obtain own- 
ership of a majority of the EchoDiskReps. (In con- 
figurations with an even number of EchoDiskReps, 
witnesses are used to break ties [8].) Echo Volumes 
(subtrees of files and directories) are layered on top of 
the EchoDisk interface. This layer is also responsible 
for the distributed caching algorithm between clients 
and servers, including replicating the caching infor- 
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mation in the main memories of the primary and the 
secondaries. Multiple Echo Volumes may be stored 
in a single EchoDisk, with a single instance of the 
election algorithm. 

In general, even though a system employs a coarse 
granularity of replication internally, end users could 
still be presented the illusion of granularity at  the 
level of files, by adding a level of indirection. At 
the time a file is created, it would be assigned to 
a particular instance of a larger-grained data unit 
whose properties (e.g., number of replicas) matched 
those desired by the end user. In Echo, we provide 
a weak form of this functionality. A system adminis- 
trator can configure each EchoDisk to have a particu- 
lar number of replicas, and can assign Echo Volumes 
to EchoDisks. An end user can then place a file in 
a volume with the desired properties (provided she 
has write permission to a directory in that volume). 
A deficiency of this scheme is that placing a file in 
a particular volume forces a prefix of the file name 
to be the name of that volume. This deficiency is 
mitigated by the fact that many Echo Volumes with 
different names can be placed in a single EchoDisk. 

Status 
At this writing, Echo is just beginning to turn over. 
The code for replication and failover has all been writ- 
ten, and has survived preliminary testing. Our future 
plans include making failover go fast. 
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