
Granularity and Semantic Level of Replication
in the Echo Distributed File System

Introduction
Two major design

Andy Hisgen, Andrew Birrell, Chuck Jerian, Timothy Mann,
Michael Schroeder, and Garret Swart

DEC Systems Research Center
130 Lytton Avenue

Palo Alto, CA 94301, USA
April 12, 1990

issues in any replicated data stor-
age system are the semantic level of replication and
the granularity of replication.

By the semantic level of replication, we mean the
lowest level of abstraction within the system’s imple-
mentation such that the data objects stored in the
replicas appear t o be equal when viewed at this level.
A system that presents an external interface at a par-
ticular semantic level is fre6 in its internal implemen-
tation to replicate its data at that same semantic level
or at any lower level that it chooses. For example,
in a source code control system providing versioned
files, the replication internally could be at the level
of versioned files, but it could also be at the level
of non-versioned files (with a suitable mapping from
versioned file names to non-versioned), at the level
of unnamed files, or even at the level of an array of
logical disk blocks.

By the granularity of replication, we mean the unit
of data that may be replicated independently of other
units of data. For a replicated file system, examples
of a unit of data include a file, a record within a file,
a directory and its children, a logical volume (say, a
Unix file system), or a collection of logical volumes
that are co-located in the same physical resources.
The design choices for granularity are constrained by
the choice for the semantic level of replication: the
granularity of replication may be no finer than the
granularity of data objects provided by the semantic
level. In general, the higher the semantic level, the
more choices there are for the granularity of replica-
tion.

This paper examines the choices for semantic level
and granularity that have been made in the Echo dis-
tributed file system [3, 61. The primary goals of Echo
are to explore issues of scaling, availability, and per-
formance. For scaling and uniformity of access, Echo
provides a global, hierarchical name space. Repli-
cation is employed for availability. Performance is

achieved by distributed caching on clients, and by
using a log on the file server to reduce disk seeks [2].
The log also records information about updates that
are in progress, and this information is used during
crash recovery to bring all replicas into agreement.

The Echo hierarchical name space is structured as
a collection of subtrees, called Echo Volumes, that
are glued together to form a single name space. Each
Echo Volume may be implemented by a different ser-
vice, for example, a name service or a file service [3].
In the remainder of this paper, we discuss only the
file service component of Echo.

Aspects of Echo Replication
This section presents a summary of those aspects of
the Echo replication algorithm that are needed for
understanding the rest of the paper; other aspects
are omitted.

In Echo, data storage is implemented by server
computers and disks. As independent choices, an
Echo hardware configuration may have replicated
disks and/or multiple server computers. In general,
disks are multi-ported and connected to several server
computers. Each such disk has a multi-port arbiter,
which recognizes at most one connected server com-
puter as its owner at a time. Ownership is subject
to timeout. Echo can also make use of singleported
disks; in this case, software on the single physically-
connected server simulates the multi-port arbiter, and
other logically-connected server computers access the
disk via this server over the network.

Echo employs a distributed caching algorithm be-
tween clients and servers, in which servers keep track
of which clients have cached what files and directories
[4, 5 , 71. This caching information is replicated in the
main memories of the server computers.

The server computers are organized in a primary-
secondaries scheme. First, the server computers com-
municate amongst themselves to choose a poten-
tial primary who has up-to-date caching information.

2
TH0329-3/90/0000/0002$01 .OO Q IEEE

Since server computers may be partitioned, this step
can produce more than one potential primary. Next,
each potential primary tries to claim ownership of a
majority of the disks. If a potential primary succeeds
in claiming a majority of the disks, it becomes the
real primary.

Because disk ownership is subject to timeout, the
current owner must refresh its ownership periodically.
After a failure of the primary, a secondary must wait
for the disk ownership timeouts to expire before it can
become the new primary. The waiting is required in
order to guarantee that there is never more than one
primary. Thus, the ability to fail over quickly is de-
pendent upon short ownership timeouts with frequent
refresh.

During service, all client reads and updates are sent
to the primary. For client updates, the primary writes
to all disks that are up and in communication. For
client reads, only one disk needs to be read, since
there is at most one primary and all update traffic
goes through it.

Semantic Level of Replication

In designing Echo, we considered two alternatives for
the semantic level of replication, (1) at the level of
files and directories, and (2) at the level of an array
of logical disk blocks. Both have their advantages and
disadvantages; we ultimately chose (2).

An advantage of replicating at the semantic level of
files and directories is that it could facilitate reading
from secondaries for load balancing (since each sec-
ondary understands how to navigate files and directo-
ries). Another advantage is that, in principle, the rep-
resentation of files and directories in terms of lower-
level disk blocks can be different on each replica,
which could be important in an environment of het-
erogeneous servers or for smooth software evolution.
A potential disadvantage is that, in principle, bring-
ing the replicas into agreement during crash recovery
requires that each file system operation have a cor-
responding undo operation, which is hard for delete
operations. However, there is a special-case trick that
avoids the need for general undo: all operands of the
original operation may be copied from another replica
that did not perform the operation.

The advantages of replicating at the semantic level
of an array of logical disk blocks are as follows.
It is a good match for multi-ported disk hardware:
the primary writes directly to all disks without go-
ing through the secondaries, which therefore do not
have to be up. The design accommodates schemes
for redundant arrays of inexpensive disks (RAID)
in which error-correcting codes are implemented at

the block level [9]. RAID has a cost advantage over
fully mirrored disks in that it provides an interme-
diate cost point between no redundancy and double
redundancy. The log can use new-value logging, in
which the information logged for an update is sim-
ply a sequence of records, each giving the new value
for a byte range within a logical block. We believe
that new-value logging is simpler to program and get
right than operational logging. For example, with
new-value logging, it is trivial to ensure that redo is
idempotent, whereas with operational logging, redo
must figure out which disk pages already have the
update and and which do not. This requires care-
ful programming and additional machinery, such as
recording a log sequence number on each disk page.
Another advantage is that the log is a single, common
log that is replicated byte-for-byte on all disks, just
like ordinary data, which makes the log less vulnera-
ble to bad-disk-block errors. Whereas with (1) above,
each replica requires its own distinct log.

Granularity of Replication

Replication schemes that provide strict consistency
between replicas (i.e., one-copy serializability [l]) and
that are resilient against communicat.ion partitions
require the use of quorum algorithms. Schemes that
choose a primary synchronization site and that main-
tain this primary’s quorum using keep-alives (like
Echo) have an ongoing expense even after entering
service (The keep-alives could be done lazily, say, only
if there is a client read or update request, but this
still represents an expense.). Therefore, it is advan-
tageous to employ some kind of grouping of related
data, and carry out a single election for a whole group
of data rather than many separate elections for indi-
vidual data items. That is, the granularity of replica-
tion should be fairly large. We believe that file-level
granularity is too fine, since it requires too many in-
stances of the election algorithm.

In Echo, the granularity of replication is an en-
tire array of logical disk blocks. A replica, called an
EchoDiskRep, is configured from one or more physi-
cal disks. Two or more EchoDiskReps are combined
to form an EchoDisk, which provides a replicated ar-
ray of logical blocks to the next layer up. In the
election, the potential primary tries to obtain own-
ership of a majority of the EchoDiskReps. (In con-
figurations with an even number of EchoDiskReps,
witnesses are used to break ties [8].) Echo Volumes
(subtrees of files and directories) are layered on top of
the EchoDisk interface. This layer is also responsible
for the distributed caching algorithm between clients
and servers, including replicating the caching infor-

3

mation in the main memories of the primary and the
secondaries. Multiple Echo Volumes may be stored
in a single EchoDisk, with a single instance of the
election algorithm.

In general, even though a system employs a coarse
granularity of replication internally, end users could
still be presented the illusion of granularity at the
level of files, by adding a level of indirection. At
the time a file is created, it would be assigned to
a particular instance of a larger-grained data unit
whose properties (e.g., number of replicas) matched
those desired by the end user. In Echo, we provide
a weak form of this functionality. A system adminis-
trator can configure each EchoDisk to have a particu-
lar number of replicas, and can assign Echo Volumes
to EchoDisks. An end user can then place a file in
a volume with the desired properties (provided she
has write permission to a directory in that volume).
A deficiency of this scheme is that placing a file in
a particular volume forces a prefix of the file name
to be the name of that volume. This deficiency is
mitigated by the fact that many Echo Volumes with
different names can be placed in a single EchoDisk.

Status
At this writing, Echo is just beginning to turn over.
The code for replication and failover has all been writ-
ten, and has survived preliminary testing. Our future
plans include making failover go fast.

References
Philip A. Bernstein, Vassos Hadzilacos, and
Nathan Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley,
1987.

Robert Hagmann. Reimplementing the Cedar
file system using logging and group commit. In
Proc. 11th Symp. on Operating Systems Princi-
ples, pages 155-162. ACM SIGOPS, November
1987.

Andy Hisgen, Andrew Birrell, Timothy Mann,
Michael Schroeder, and Garret Swart. Avail-
ability and consistency tradeoffs in the Echo dis-
tributed file system. In Proc. Second Workshop
on Workstation Operating Systems, pages 49-54.
IEEE Computer Society, September 1989.

John H. Howard, Michael L. Kazar, Sherri G.
Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J . West.

4

Scale and performance in a distributed file sys-
tem. ACM h n s a c t i o n s on Computer Systems,
6(1):51-81, February 1988.

Michael L. Kazar. Synchronization and caching
issues in the Andrew file system. In Winter Con-
ference Proceedings, pages 27-36. USENIX Asso-
ciation, February 1988.

Timothy Mann, Andy Hisgen, and Garret Swart.
An algorithm for data replication. Technical R e
port 46, DEC Systems &arch Center, Palo
Alto, California, June 1989.

Michael N. Nelson, Brent B. Welch, and John K.
Ousterhout. Caching in the sprite network file sys-
tem. ACM lhnsactions on Computer Systems,
6(1):134-154, February 1988.

Jehan-Francois Piiris. Voting with witnesses: A
consistency scheme for replicated files. In Proc.
6th International Conference on Distributed Corn-
pufer Systems, pages 606-612. IEEE Computer
Society, 1986.

D. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
Proc. of the ACM SIGMOD Conference, pages
109-116. ACM SIGMOD Record, Volume 17,
Number 3, 1988.

