Experiences with Formal Specification of Fault-Tolerant File Systems

Roxana Geambasu
University of Washington
roxana@ cs.washington.edu

Abstract

Fault-tolerant, replicated file systems are a crucial
component of today’s data centers. Despite their huge com-
plexity, these systems are typically specified only in brief
prose, which makes them difficult to reason about or ver-
ify. This paper describes the authors’ experience using for-
mal methods to improve our understanding of and confi-
dence in the behavior of replicated file systems. We wrote
formal specifications for three real-world fault-tolerant file
systems and used them to: (1) expose design similarities and
differences; (2) clarify and mechanically verify consistency
properties; and (3) evaluate design alternatives. Our expe-
rience showed that formal specifications for these systems
were easy to produce, useful for a deep understanding of
system functions, and valuable for system comparison.

1. Introduction

Fault-tolerant, replicated file systems have become a
crucial component of today’s dependable enterprise data-
centers. For example, the Google File System (GFS) [9],
Niobe [16], and Dynamo [7] underlie many of the web ser-
vices offered by Google, Microsoft, and Amazon.com, re-
spectively. Many other fault-tolerant file systems have been
developed in academic settings, as well (e.g., [15, 19]). All
of these systems are extremely complex, including sophisti-
cated asynchronous protocols, e.g., for replica consistency,
recovery, and reconfiguration.

Despite their complexity, fault-tolerant file systems
have typically been described only in a few pages of prose,
which can be incomplete, inaccurate, or ambiguous. This
makes reasoning about and proving system properties hard
and error-prone. In contrast to prose, formal specifications
in a language such as TLA+ [13] are unambiguous and pro-
vide solid grounds for model checking and formally proving
system properties. The advantages of formal specifications
have been previously reported for various types of systems,
e.g.: caches [11], space shuttle software [6], and local and
distributed file systems [18, 20].

We wished to explore how formal specifications and
methods can help in understanding, comparing, and prov-

Andrew Birrell
Microsoft Research
birrell@microsoft.com

John MacCormick
Dickinson College
Jjmac@dickinson.edu

ing properties of another important class of systems: fault-
tolerant, replicated file systems. To do this, we wrote formal
specifications for three real-world, successful fault-tolerant
file systems — GFS, Niobe, and Chain [19] — and used those
to analyze, compare, and prove properties of the systems.
This paper presents our experience writing and using those
formal specifications. Overall, we found that formal speci-
fications improve understanding of system functioning, en-
able better comparison, and are reasonably easy to produce.
We found specifications particularly useful for three
purposes. First, specifications help crystallize differences
and similarities of the systems’ mechanisms. For instance,
we find that GFS and Niobe have substantial overlap in
mechanisms; our specification isolates common mecha-
nisms and provides a clear view of what is similar and dif-
ferent. Second, specifications enable understanding and me-
chanical verification of the systems’ consistency semantics.
To reason about a system’s consistency, we reduce the sys-
tem to a much simplified analog (called a SimpleStore), and
use refinement mappings [1] to verify that the system im-
plements its SimpleStore. We then reason about and com-
pare consistency properties of SimpleStores. Third, specifi-
cations enable comfortable experimentation with alternative
system designs, which can be a valuable tool for a designer.
Our approach is pragmatic. While our specifications,
in principle, enable full formal proofs [11], we rely on
model checking of limited instances of the systems to con-
firm properties comfortably. By revealing various ways in
which specifications are valuable in fault-tolerant file sys-
tem analysis and comparison, we hope to convince system
builders of the utility of specifying their own systems.
After providing some background (Section 2), we
demonstrate the three usages of specifications (Sections 3, 4,
and 5). We then review previous work (Section 6) and share
some lessons from our practical experience (Section 7).

2. Background
2.1. Overview of the Studied Systems

In the three studied systems, each data object is stored
at a group of replicas (groups can overlap), and the group
is managed by a single master. The systems are reconfig-

urable, allowing failed or disconnected replicas to be re-
moved from the group and new replicas to be added.

GFS. GFS provides a file-level write/append/read in-
terface to clients. Files stored in GFS are partitioned into
fixed-size chunks, each of which is replicated by a group.
The master assigns a unique primary to each group. To per-
form a chunk write or append, the client sends the data to
all replicas and then submits a write request to the primary,
who acknowledges the write if all replicas have succeeded.
To read from a chunk, the client goes to any of the chunk’s
replicas. Although in the published paper the master was
not guaranteed to be reliable, we will assume it is here, to
enable comparison to Paxos-based Niobe and Chain.

Niobe. Niobe offers an object-level read/write inter-
face, where the object is the replication unit. Similarly to
GFS, a unique primary exists for each group. To perform
a write, the client submits the data to the primary, which
writes it to disk and forwards it to the secondaries. The sec-
ondaries perform the write and acknowledge it to the pri-
mary. If any secondary fails to ACK the write in a timely
manner, the primary proposes to the master that the failed
replica(s) be removed from the group. After all replicas
have ACKed the write (or have been removed), the primary
responds to the client with success if the write succeeded at
a configurable number of replicas, or with error otherwise.
To read an object, the client goes to the primary.

Chain. Chain imposes a structure on the replica group:
replicas are arranged in a chain. Writes are sent to the head
of the chain and travel along the chain toward the tail, where
they get acknowledged. Reads are sent to the tail, which re-
turns its local value. While GFS and Niobe support network
partitions, the original Chain paper implicitly assumes no
network partitions. For example, it does not specify how to
prevent a client from reading from a stale, but still alive tail.
We assume in this work no network partitions for Chain.

2.2. TLA+ and Refinement Mappings

TLA+ is a formalism based on temporal logic, espe-
cially suited for specifying asynchronous distributed sys-
tems [13]. To specify a system, one describes its allowed
behaviors using a state-machine approach. One specifies
the variables that compose the system’s state, a set of ini-
tial states, and the transitions leading from one state to an-
other. A TLA+ specification can be enhanced with proper-
ties, which can be model-checked using the Temporal Logic
Checker (TLC [14]). Because TLC exhaustively checks a
system’s state space, which is typically exponential, it can
generally be used only on small instances of a system.

A refinement mapping [1] is a technique used to re-
duce one specification to another. Using refinement map-
pings, we reduce our specification of each system to a sim-
ple model of the system (called a SimpleStore). Figure 1
illustrates a refinement mapping: it maps a system’s state

SimpleStore

G

Refinement mapping

System model

Figure 1. Refinement mapping from a system to its
SimpleStore. Clouds represent state spaces. The refine-
ment mapping maps the system’s states onto states in Sim-
pleStore. System states S and S map onto states S7 and
S%, respectively (S7 and S5 may be the same state). The
mapping is valid if for any S7 and S, for any system tran-
sition 7" from Sy to Sa, there exists a SimpleStore transition
T’ leading from S to S5 (possibly the identity transition).

space onto the SimpleStore’s state space. A system imple-
ments its SimpleStore if all the system’s client-visible be-
haviors can be mapped onto valid SimpleStore behaviors.

We do not attempt to prove implementations. Instead,
we specify the mappings as TLA+ properties, and model-
check them for limited instances of the systems (three repli-
cas). Of course, to prove implementation for any instance,
one can perform full proofs. Such proofs, although in prin-
ciple enabled by our specifications [11], are out of scope
here. Still, our model checking covers the typical setting in
industry systems like GFS, which do three-way replication.

Having verified that a system implements its Simple-
Store, proving history-based consistency properties about
the system (e.g., linearizability) is known to be reducible to
proving them for its SimpleStore [11], which is significantly
easier than reasoning about the whole system.

3. Comparing System Mechanisms

We produced TLA+ specifications for all three of the
systems. For GFS and Chain, specifications are based on
published papers describing the systems and (email) con-
versations with the systems’ designers; for Niobe, one of
the designers participated in this work and is a co-author
of this paper. Table 1 provides the sizes of our specifica-
tions and the time to write them. For each system, we speci-
fied at least how reads, writes, and replica removal are done.
For Chain, we also specified the recovery mechanism. Due
to the expressiveness of a formalism such as TLA+, spec-
ifications distill core replication mechanisms and protocols
from the systems’ complexity. As a result, our specifications
are small (500 TLA+ lines, or about 10 pages), yet precise,
high-level models of the systems. Overall, we found speci-
fications to be extremely helpful for an in-depth understand-
ing of systems, as well as reasonably easy to produce.

Specifications also prove valuable for a crisp compari-
son of the mechanisms in different systems. While a detailed
examination of the specifications would show how the key
differences and similarities stand out clearly in TLA+, we

Chain Niobe GFS

TLA+ Lines 410 480 705

Time to write | 3 weeks | 2 weeks | 2 weeks
Table 1. The three TLA+ specifications. For each sys-
tem, we show the TLA+ specification size, and the time to
produce the first working version by one person, without
prior TLA+ knowledge. The Chain specification was the

first to be written, and took longer due to lack of experience
with TLA+. The GFS specification is significantly longer,
as we specify writes and appends separately.

GFS Niobe
PinalizeWrite(prim, w) = FinalizeWrite(prim, w) =
Vr € Replicas : Vr € Replicas :

V AckedWrite(prim, r, w) Vv AckedWrite(prim, r, w)
V Timeout(prim, r, w) V (A Timeout(prim, r, w)

AT & group)

Figure 2. Design differences in TLA+. The figure shows
TLA+ snippets from the Niobe and GFS modules. The pur-
pose of this figure is not TLA+ instruction, but rather to help
the reader visualize how design differences (shown in a box)
stand out clearly in TLA+.

choose to provide only an example here and make specifica-
tions available online [8].

From reading the original papers, GFS and Niobe seem
very different systems, designed and optimized for quite dif-
ferent client semantics and workloads. However, as we were
creating their specifications, it became clear to us that the
systems had in fact a lot of mechanisms in common. Fun-
damentally, they both rely on a single master and a primary-
secondary replication scheme. Consequently, we abstracted
this structure into a common TLA+ module, which we ex-
tended in the Niobe and GFS specifications. This factoriza-
tion turned out to be a powerful effect: the common module
has 291 TLA+ lines, the modules specific to GFS-writes and
Niobe are 189 lines and 287 lines, respectively, and the ini-
tial, unsplit Niobe specification was about the same size as
the factorized one. In other words, the two systems’ specifi-
cations have over half their TLA+ lines in common.

After factorization, the core differences between the
two systems stood out clearly in TLA+. For example, our
specifications make clear the distinction between write fi-
nalization in GFS and Niobe. Figure 2 illustrates this dis-
tinction in a side-by-side comparison of a part of the func-
tion specifying when writes are finalized. In GFS (left side),
the primary finalizes a write after the write request to each
of the replicas has either been acknowledged or has timed
out. In Niobe (right side), the primary finalizes a write only
after each replica has either acknowledged the write, or it
has timed out and has been successfully removed from the
group. This last condition represents the distinction and is
signaled by a box in the figure.

By abstracting out the key aspects that differentiate real
systems, specifications also help us understand the trade-
offs that each system bargains for. As one example, from

3
relax relax
Chain_SS| i=—> |Niobe_SS ﬂﬂl:>‘GFS_SS‘

refinement refinement
mappings mapping

‘ Chain Niobe GFS ‘

Figure 3. SimpleStore and refinement mapping for
each system. We first construct and verify Chain’s Sim-
pleStore (Chain_SS), then relax Chain_SS to construct
Niobe_SS, and further relax Niobe_SS to arrive at GFS_SS.

the above design distinction, we learn that while GFS can
achieve better write latency, Niobe never leaves the replica
set in an inconsistent state, even after a failed write. As
another example, by allowing the client to read from any
replica, GFS achieves better read performance for work-
loads where many simultaneous clients read the same data.

4. Understanding and Comparing Consistency

Currently, designers of fault-tolerant file systems typ-
ically rely only on reasoning to understand their systems’
consistency. Reasoning about a full system can be compli-
cated, faulty, lengthy, and inefficient (especially if the design
is not yet finalized). In this section, we provide our experi-
ence with applying formal methods to understand and com-
pare consistency properties of fault-tolerant file systems.

Our technique combines TLA+ specifications, refine-
ment mappings, and model checking. In a nutshell, we re-
duce the systems to simplified, client-centric models (Sim-
pleStores) and analyze and compare the consistency of those
models instead. A system’s SimpleStore captures all client-
visible behavior, but abstracts out many lower-level details,
hence making proofs of consistency properties easy. We
specify SimpleStores formally in TLA+, produce refinement
mappings from each system to the appropriate SimpleStore,
and use model checking to validate the reduction. Then,
by proving consistency properties about a system’s Simple-
Store, we infer that the system has those properties.

To enable comparison, we start by building a Simple-
Store for the most strongly consistent system and then relax
it to match the behavior of weaker systems. Figure 3 shows
the order in which we reduce systems to their SimpleStores.

4.1. The Chain SimpleStore

Figure 4(a) shows the structure of the Chain Simple-
Store (Chain_SS). It has two components: a reliable serial
database (SerialDB) and two unreliable incoming channels
(pending_rdreq, pending.wrreq). Clients push their read
and write requests into pending_rdreq and pending_wrreg,
respectively. SerialDB takes requests one by one from the
channels, handles them, and responds to the client immedi-
ately. All SerialDB actions are atomic and persistent. Chan-
nels are unreliable: they can reorder or drop requests. If a

Client Requests Responses
writes riads reads wr;tes)
pending_rdreq Client Requests Responses Responses
wr‘ites r?ads re§\ds wr}tes writgs
- | 3
pending_wrresp §

W commit(w,)

comHit(ws) W, —
— W,

sl
A—— pending_wrreq
pending_wrreq SerialDB
drop(w,)
drop(w,, 7
X arop() Chain_SS x

SerialDB

droptvs)
X Niobe_SS

:@:: Atomic actions

(a) Chain SimpleStore

(b) Niobe SimpleStore

Figure 4. Structure of Chain (a) and Niobe (b) SimpleStores. Sections 4.1 and 4.2 provide detailed descriptions.

Chain_SS
variable
pending_rdreq
pending_wrreq

Mapping from Chain state

to Chain_SS variable

Read requests at the tail

Union of all requests in the input channel
of each live replica

Value of last write committed by tail

SerialDB disk

Table 2. Refinement mapping from Chain to Chain_SS
(intuition). We show how to compute each variable in
Chain_SS from the state in Chain.

channel drops a request, the request is never handled by Se-
rialDB and hence is never responded to. To handle a read
request (the read() action), SerialDB responds to the client
with the current value of its disk. To handle a write request
(the commit() action), SerialDB saves the write’s value to its
disk and sends a response to the client.

We produced a refinement mapping from Chain to
Chain_SS (Table 2). We model-checked the refinement map-
ping using TLC, for a limited instance of the Chain system:
three replicas, one object, and two data values. The check
took two days and finished successfully, providing high con-
fidence that indeed Chain implements Chain_SS.

Using Chain_SS, we can infer client-centric consis-
tency properties of Chain, namely linearizability. Thanks to
its simplicity, Chain_SS can be proved linearizable in about
half a page [8]. Hence, Chain must also be linearizable.

Using formal methods, we were thus able to prove
that Chain is linearizable for the common three-replica case.
This is a powerful effect: using comfortable (and error-free)
model checking of a simple model, we fortified the tradi-
tional error-prone reasoning about a full asynchronous pro-
tocol. Our method thus increases our trust in the system’s
behavior in the face of failures.

4.2. The Niobe SimpleStore

Intuitively, Niobe seemed to map well onto Chain_SS,
so we attempted to model check a mapping between Niobe
and Chain_SS. However, TLC revealed an example of Niobe
behavior which is not mappable onto any Chain_SS behav-
ior. The behavior, which requires 10 message exchanges,

captures the case when an old primary’s write succeeds and
is responded to the client after a write of a newer primary.
This behavior leads to a still linearizable history, however, it
cannot be captured by Chain_SS. What we need is support
for out-of-commit-order response delivery to clients.

Hence, we extended Chain_SS in Niobe_SS to add
support for this behavior (Figure 4(b)). Two modifica-
tions are needed. First, in Niobe_SS, the input channel
pending._wrreqis ordered and writes are committed in chan-
nel order. Second, to tolerate out-of-commit-order response
delivery, SerialDB places responses to writes into a pending
response channel (pending wrresp). This channel can later
drop a response or deliver it. Now, when SerialDB commits
a write w, it moves all preceding writes in pending_wrreq to
the pending_wrresp channel, commits w’s value to disk, and
ACKSs w to the client. Later on, some of the moved writes
might succeed (respond()), others might fail (drop()).

As with Chain, we model-checked a refinement map-
ping from Niobe to Niobe_SS for the same 3-replica in-
stance of the system. The check finished successfully in
3 days, providing high confidence that Niobe implements
Niobe_SS. Niobe_SS remains linearizable. The proof is
slightly more involved than for Chain_SS, but certainly man-
ageable [8] and significantly easier than for a full system.

4.3. The GFS SimpleStore

Even if we assume master reliability, GFS cannot be
mapped onto either Chain or Niobe SimpleStores. We iden-
tified three counter-examples:

Ex. 1 Non-atomic writes. A GFS write can be split into mul-
tiple writes that go to different sets of replicas, and are
thus serialized by different primaries.

Ex. 2 Stale reads. In GFS, a client can read from a stale
replica, i.e., one that is no longer part of the group and
has missed some updates.

Ex. 3 Read uncommitted. Reads in GFS can go to any
replica, so a client can read the value of an in-progress
write. This can lead to non-sequentially consistent be-
haviors, like the one shown in Figure 5.

3.Ackw() R, 5.1

G, R 0
L. w(1) .1 2%

~

9. w(1)

4.r

6.1 %
2. w2

8. Ackw(l) R, 7.10)

Figure 5. Counter-example for sequential consistency
for GFS. R1 is the primary. The partially ordered sequence
of messages (order numbers are shown) leads to a non-
sequentially consistent history: < w(1), =, 7(1), r, 7(0),
w(1) > (barred operations represent responses).

The above examples are also counter-examples to se-
quential consistency and linearizability. However, the result
that GFS is not linearizable is not surprising, nor does it en-
able comparison to Chain and Niobe’s consistency models.
What is more interesting is that by eliminating the first two
counter-examples, we were able to map GFS onto a simple
extension of Niobe_SS, with a well-understood consistency
model. Hence, we make two assumptions:

A1l Writes and reads never cross chunk boundaries, and
A2 Reads never go to stale replicas.

Using the same technique as before, we reduced a GFS
specification incorporating these assumptions to GFS_SS,
which extends Niobe_SS as follows. A read() in GFS_SS
returns either (1) the value of SerialDB, (2) a value from
pending.-wrreq Of pending_wrresp, OI (3) a dropped write.

GFS_SS offers standard regular register semantics [12],
which are weaker than linearizability, but stronger than safe
semantics. The proof is again very simple [8]. Thus, us-
ing formal methods, we were able to identify two assump-
tions that upgrade GFS’ consistency guarantees to well-
understood regular register semantics. This finding casts
light on GFS’ consistency model, which we found hard to
grasp from the original paper.

S. Inspecting Alternative Designs

In the previous sections, we showed that formal meth-
ods can aid in understanding and comparing mechanisms
and consistency properties of fault-tolerant file systems. Our
experience indicates that formal methods can be a valuable
tool during the design phase of a system, as well. They can
be used by a designer to evaluate alternative designs com-
fortably. To inspect the effects of an alternative design on
consistency, a system builder only modifies the specification
and re-checks the refinement mapping, to verify whether the
system still implements its SimpleStore.

Using our framework (consisting of TLA+ specifica-
tions, SimpleStores, and refinement mappings), we experi-
mented with a simple design alternative for Niobe. As we
have seen, one distinction between Niobe and GFS designs
is that the former directs all reads and writes to the same
primary, while the latter allows all replicas to answer a read
request. GFS’ read-any decision has an important impact
on performance, since it increases GFS read throughput by
distributing bandwidth across distinct replicas.

As a specific question of alternative design, what would
happen to Niobe’s consistency semantics if it were to em-
ploy the same read-any policy as GFS? Without extra mech-
anism, Niobe would no longer be linearizable, since it ad-
mits behaviors like the one shown for GFS in Figure 5.
However, we were able to model-check a mapping from
Niobe with read-any to GFS_SS, which shows that it must
offer regular register semantics.

An interesting follow-up question is whether read-any
Niobe can give up or simplify some of its mechanisms
(e.g., reconciliation at primary take-over) without losing the
regular-register status. This question is a good example of
a new question space whose exploration is enabled by our
framework and an interesting point of future work.

6. Related Work

Formal modeling and methods have long been used to
reason about software [3, 4] and hardware [11, 17]. We
leverage these techniques and apply them to several fault-
tolerant file systems. While formal methods have been
widely used in hardware designs [11], builders of fault-
tolerant file systems have still not adopted modeling and
verification as a general practice. By sharing our experi-
ence, we hope to convince those builders of the utility and
practicality of formally specifying their systems.

Our work is by no means the first with this goal. Many
previous works report on the benefits of applying formal
methods to various classes of systems, e.g.: caches [11],
space shuttle software [6], on-line transaction processing
systems [10], local and distributed file systems [18, 20, 21],
and many others (a wealth of examples are presented in a
survey [5]). Our work shows how and why to apply several
formal methods to another important application domain:
enterprise fault-tolerant, replicated file systems. From this
body of previous works, the closest to ours are those pre-
senting formal modeling case studies for local or distributed
file systems (e.g., Coda, AFS) [18, 20, 21]. Fault-tolerant
file systems differ from these systems in that they include
new types of complex mechanisms, e.g., automatic recon-
figuration and recovery. We believe that our study geared
toward fault-tolerant file systems is likely to have impact in
this specific domain in ways that previous studies may not.

Some works [2, 18] introduce new formal frameworks
especially designed for modeling file systems. Because
these specialized frameworks do not support model check-
ing, proofs require manual effort. In contrast, we apply
generic formalisms, which enable automatic verifications.

The technique of reducing complex systems to sim-
ple models to reason about consistency has been used be-
fore [11, 19]. In particular, the storage service model intro-
duced in [19] is a valid abstraction, however the model’s use
of histories made it inappropriate for model-checking.

7. Conclusions and Lessons Learned

We have presented our experience with applying for-
mal methods to analyze and compare three real-world fault-
tolerant file systems. We now share four of the lessons we
learned from our experiment.

First, moderately detailed TLA+ specifications of real
systems are not as hard to produce as we had thought be-
forehand. For example, one student wrote a first workable
specification for GFS in about two weeks. Clearly, the more
in-depth the specification is, the more time it takes to write.
But overall, we believe that writing a high-level specifica-
tion by a system designer is a fairly easy task, yet a remark-
ably useful one for understanding the system.

Second, we found that the exercise of writing TLA+
specifications exposed similarities in seemingly dissimilar
systems. This was the case for GFS and Niobe, where we
factored out all common mechanisms into one abstraction.
We believe that our common TLA+ specification can ease
the building of specifications for other primary-secondary-
master systems (e.g., Boxwood [15]).

Third, formal specifications enable insightful semantic
comparison, even between strongly and weakly consistent
systems. By building client-centric models of the systems
and comparing them, we were able to understand better how
the systems behave and to reach several conclusions, e.g.:

1. Niobe and Chain perform similarly from a client per-
spective, implementing similar client-centric models.

2. GFS can be upgraded to regular register semantics via
a clear set of assumptions.

3. GFS’ design decision to read from any replica for per-
formance heavily influences its consistency model. In
particular, if Niobe were to adopt this design decision
for performance, its consistency model would degrade
from linearizability to regular-register.

Finally, we found that intuition can often be unreli-
able, and thus backing it up with formal verification is use-
ful. For example, after verifying that Chain implemented
Chain SimpleStore, we truly believed that the same model
was right for Niobe, as well, without realizing that it missed
one type of Niobe transition. It then took several iterations
of the model to arrive at the right model (Niobe_SS).

Thus, our practical experience has shown that for-
mal specifications and methods are useful tools for design-
ing, analyzing and comparing fault-tolerant file systems.
Through the use of such tools, systems designers can in-
crease the trust in the behavior of these important infras-
tructure components in the presence of failures.

8. Acknowledgements

We thank Hank Levy and Chandu Thekkath for their
valuable comments on the paper, and Idit Keidar, Dahlia
Malkhi, and Yuan Yu for their ideas during our work. We

also thank the anonymous reviewers for their valuable com-
ments. This work was mostly done during an internship at
Microsoft Research. Roxana Geambasu is supported in part
by National Science Foundation Grant NSF-614975.

References

[1] M. Abadi and L. Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 1991.

[2] K. Bhargavan, M. Shapiro, and F. le Fessant. Modelling repli-
cation protocols with actions and constraints, 2003.

[3] M. Bickford and D. Guaspari. Formalizing the chain replica-
tion protocol. http://www.cs.cornell.edu/Info/Projects/
NuPrl/FDLcontentAUXdocs/ChainRepl, 2006.

[4] D. Chkliaev, P. van der Stok, and J. Hooman. Formal model-
ing and analysis of atomic commitment protocols. In Proc. of
the Conference on Parallel and Distributed Systems, 2000.

[5] E. Clarke and J. Wing. Formal methods: state of the art and
future directions. ACM Computing Surveys, 28(4), 1996.

[6] J. Crow and B. D. Vito. Formalizing space shuttle software
requirements: four case studies. ACM Transactions on Soft-

ware Engineering and Methodology, 7(3), 1998.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, and W. V.
P. Vosshall. Dynamo: Amazon’s highly available key-value
store. In Proc. of ACM SOSP, 2007.

[8] R. Geambasu, A. Birrell, and J. MacCormick. @ TLA+
Specifications and Proofs for Niobe, GFS, and Chain.

http://cs.washington.edu/homes/roxana/fm/, 2007.

[9] S. Ghemawat, H. Gobioff, and S. Leung. The Google File
System. In Proc. of ACM SOSP, 2003.

[10] I. Houston and S. King. CICS project report: Experiences
and results from using Z. In Proc. of Formal Development
Methods, 1991.

[11] R.Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and
Y. Yu. Checking cache-coherence with TLA+. Formal Meth-
ods in System Design, 2003.

[12] L. Lamport. On interprocess communication. Distributed
Computing, 1986.

[13] L. Lamport. Specifying Systems. Addison Wesley, 2003.

[14] L. Lamport, Y. Yu, and L. Zhang. TLA+ tools. re-
search.microsoft.com/research/sv/TLA Tools, 2007.

[15] J. MacCormick, N. Murphy, M. Najork, C. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for stor-
age infrastructure. In Proc. of OSDI, 2004.

[16] J. MacCormick, C. Thekkath, M. Jager, K. Roomp, L. Zhou,
and R. Peterson. Niobe: A practical replication protocol.
ACM Trans. Storage, 2008.

[17] K. Shimizu and D. Dill. Using formal specifications for func-
tional validation of hardware designs. IEEE Des. Test, 2002.

[18] M. Sivathanu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and
S. Jha. A logic of file systems. In Proc. of the USENIX Con-
ference on File and Storage Technologies, 2005.

[19] R. van Renesse and F. Schneider. Chain replication for high
throughput and availability. In Proc. of OSDI, 2004.

[20] J. Wing and M. Vaziri. A case study in model checking soft-
ware systems. Science of Computer Programming, 1997.

[21] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using
model checking to find serious file system errors. In Proc. of
OSDI, 2004.

