
A Design for High-Performance Flash Disks
Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber

Microsoft Research Silicon Valley
wobber@microsoft.com

ABSTRACT
Most commodity flash disks exhibit very poor performance when
presented with writes that are not sequentially ordered. We argue
that performance can be significantly improved through the addi-
tion of sufficient RAM to hold data structures describing a fine-
grain mapping between disk logical blocks and physical flash
addresses. We present a design that accomplishes this.

1. INTRODUCTION
There is considerable interest within the computer industry in
using NAND-flash based storage devices for an increasingly di-
verse set of applications. These devices have traditionally been
used in digital cameras and MP3 players, applications that mainly
employ sequential writes to fairly large amounts of data. Although
the arguments in this paper apply to flash-based storage devices in
general, we will discuss the USB Flash Disk (UFD) as an exem-
plar, keeping in mind that a variety of storage-oriented intercon-
nects are possible. Commodity UFDs typically advertise similar
performance characteristics: read throughput of 8 to 16 MBytes
per second, and write throughput slightly slower at about 6 to 12
MBytes per second (depending on price). These throughput num-
bers are not a lot slower than those for low-end magnetic disks.

The performance numbers for writes, however, are for se-
quential writes. In practice, UFDs perform quite poorly for ran-
dom writes (e.g. up to two orders of magnitude worse than for
random reads). This performance degradation makes these devices
less attractive for general purpose computing applications.

UFDs typically export disk-block-level I/O interfaces. These
devices contain on-board flash memory that is accessed through a
specialized controller chip. The controller implements a flash
translation layer that presents the USB mass storage class proto-
col [10] to the host computer. The translation layer is also respon-
sible for managing writes and erasures so as to balance wear over
the flash chip.

The nature of flash memory technology requires that memory
be erased before being written. Write latency associated with era-
sure of flash memory has been understood for some time [3]. Log-
structured file systems [2, 8, 11] can be used to optimize flash era-
sure behavior and to provide wear-leveling. However LFS dep-
loyment is not commonplace in most computing environments
and this constitutes a hindrance to UFD portability. This work
concentrates on improving non-sequential write performance on
flash-disks that are used to support commonly-used file systems
like FAT32 and NTFS that are not log-structured.

In this paper we describe data structures and algorithms that
mitigate the problem of slow, non-sequential writes. One of the
main areas of concern is that in a UFD, power can fail at any time
(because the user unplugs the UFD). Furthermore, it is essential
that device power-up be fast since users are unlikely to tolerate a
perceptible slowdown when inserting a flash device. Dealing with
these two constraints led to a fairly complicated, but we believe
still practical design described here.

The rest of the paper is structured as follows: Section 2 de-
scribes our empirical investigation to get to the root of the prob-
lem (a similar discussion of random-write performance also ap-
pears in [1]); Section 3 gives a brief primer on flash memory chip
operation; Section 4 describes our design in detail; and Section 5
concludes.

2. OBSERVATIONS
To better understand the performance of the flash translation
layer, we organized some micro-benchmarks for our USB flash
disks. These benchmarks, running under Windows, called the
Win32 file system API to perform reads of various lengths, writes
of various lengths, and to measure these either sequentially or as
random access. The results immediately showed that sequential
reads, sequential writes, and random access reads all achieved the
advertised throughput speeds, regardless of transfer size. But ran-
dom access writes with moderate transfer sizes (e.g., 4 KBytes)
consistently incurred an average latency of about 22 milliseconds,
producing a net throughput of about 190 KBytes per second.

We next pursued the question of where this latency arises,
since there is a lot of software between our test program and the
underlying flash chip. The guilt became more localized after we
used a USB analyzer, and confirmed that at the level of the USB
mass storage protocol, the 4 KByte write requests were indeed
taking an average of 22 milliseconds to complete.

We believe that the explanation for this comes from the dif-

functionality of NAND flash chips. A disk is addressed linearly

new data for a given LBA, and the disk ensures this data will be
returned when reading that LBA. NAND flash provides memory
linearly addressed
each page can be written only once. To permit rewriting of a page,
a s
compensate for this, when the controller on the flash disk is asked
to write new contents into some LBA, it must write the data to a
newly erased page in the flash chip at a different page number
from the one used previously for this LBA. Consequently, the
controller must maintain a table mapping each LBA to the appro-
priate current flash page number.

It might seem natural to build this table at the granularity of
one entry per LBA. However, in that case the table for a 1 GByte
flash disk would have 2 million entries, each entry requiring 21
bits (assuming one entry per 512 byte logical sector). This ex-
ceeds the on-chip memory of controller chips, so the device would
require an external DRAM chip resulting in a slight increase in
price. Alternatively, if the granularity of this table is, for example,
quanta of 128 KBytes, then the table would require only 8192
entries and would fit on-chip. We believe this is approximately
what is happening in the current mass-market USB flash disks,
but there is a lot of variability in the performance numbers, so the
situation is undoubtedly more complex than this analysis.

88

 Now consider the performance impact of this mapping gra-
nularity. If the disk is asked to rewrite the contents of a random
LBA, an entry in this table must be modified, changing the loca-
tion of an entire 128 KBytes of data. Consequently, the controller
must now read that data from its old location on the flash chip,
modify the appropriate contents, and write it into its new location.

We attempted to quantify this effect with a Lexar JumpDrive
2.0 Pro USB [5]. First, we noticed that repetitive writes of the
same logical page take 22 milliseconds to complete as we saw
above for random writes. Next, we wrote a small test program to
sequentially write 4 KByte data blocks. We simulated non-se-
quentiality by introducing gaps (in logical disk address) between
writes. As can be seen in Figure 1, the average latency for 100
such writes grows dramatically as the distance between writes is
increased. However, there is no further degradation when writes
are separated by more than the size of two flash blocks. (A flash
block is 128 KBytes, as described in the next section.) This sug-
gests that write performance varies with the likelihood that mul-
tiple writes will fall into the same flash block.

In a final test, we wrote to pairs of nearby logical disk ad-
dresses at increasing distances, measuring the cost of each write.
These pairs of writes were issued one after the other with each
pair beginning at the first page of a new block. As depicted in
Figure 2, the cost of the second write increases with distance from
the beginning of a block. This is almost certainly due to the page
copying needed to fill partial blocks when the second write does
not immediately follow the first. T
latency due to copying pages needed to complete the block occu-
pied by the previous write pair. Thus the cost of the first write
decreases in a sawtooth pattern as distance increases from the
beginning of the block. Note that the first write cost is negligible
when the previous second write completes at a 256 KByte boun-
dary. Thus, it appears that this particular device is double-block-
aligned: two 128 KByte blocks are treated as one for purposes of
alignment. The total cost for both writes combined is close to the
22 millisecond number observed above when the writes are within
adjacent blocks, but doubles when the blocks are more distant.

We believe that the tests above demonstrate that at least some
existing UFD incur substantial overhead due to read-modify-write
behavior under random-write workloads. All three tests demon-
strate a common latency associated with completing a prior physi-
cal flash block and writing to a new one.

All flash translation layers are not alike. When the tests above
are run on a Kingston Data Traveler Elite [4], poor performance is
not always exhibited, especially when the distance between writes
is less than 4 MBytes. We suspect that this disk uses some form
of limited write-caching either in RAM or flash memory, rather
than writing all logical pages in place immediately. However,
when the cache limit is exceeded poor performance for non-se-
quential writes still results.

We found similar behavior in the M-Systems model FFD-25-
UATA-4096-N-A [5], a flash-based storage device intended as a

tic disk. This device is designed
primarily for the military market (and priced several orders of
magnitude above a commodity UFD). It behaves exactly like a
magnetic disk with a seek time of 0 for writes within a certain
range (we tried 16 MBytes), but high-latency random write
performance is exhibited when writes are distributed across the
whole disk.

Figure 2: Cost of Paired Writes

While our simple experiments are insufficient to reverse-engi-
neer the algorithm actually used by the devices we examined, the
fact that non-sequential writes, which are the norm in most mod-
ern operating systems, are much slower than sequential ones led
us to pursue a solution to this problem. Since we are interested in
a device with predictable performance, we view the modest cost
increase associated with a larger LBA mapping table as accepta-
ble. As we shall see, however, the constraints of flash devices
make managing such a large table non-trivial.

3. FLASH CHIP ORGANIZATION
We describe here the characteristics of the raw flash memory,
independent of its use in UFDs. A typical 1 GByte device, the
Samsung K9W8G08U1M [9], consists of two 512 MByte dies in
the same package. The devices have a common 8-bit I/O bus, and
a number of common control signals. The two dies have separate
chip enable and ready/busy signals, allowing one of the chips to
accept commands and data while the other is carrying out a long-
running operation. Most of this document describes the data
structures as if there were a single 512 MByte chip, but the exten-
sions to the 1 GByte part (and beyond) should be straightforward.

0

5

10

15

20

25
M

illi
se

co
nd

s

Gaps (in KB) between writes

0
5

10
15
20
25
30
35
40
45
50

M
illi

se
co

nd
s

Distance (in KB) between writes

1st write
2nd write
Total

Figure 1: Average Latency of Non-sequential Writes

89

Each die contains 4096 blocks; each block contains 64 2-
KByte pages. Each page also includes a 64 byte region used to
hold metadata for the page. Data is read by reading an entire page
from the storage array into a 2 KByte + 64 byte data register
which can then be shifted out over the data bus. Reads take 25
microseconds, and the data shifts out at 20 MBytes/second, so
shifting an entire page requires 106 microseconds. A subset of the
page may be shifted out, since the read pointer can be started at
any byte in the page. Single bits in the array may fail, so a single-
error correcting double-error detecting Hamming code must be
used to ensure data integrity.

Before a block can be used for new data, it must be erased,
which takes 2 milliseconds

may fail, which is indicated by a flag in a status register. When a
block fails (signaled by a write or erase error), it may no longer be
used for data. The chips ship from the manufacturer with up to 80
bad blocks per die. The parts ship with all blocks erased except a
bad block indicator in the metadata of the first or second page of
each block. These bad blocks cannot be used.

Writing (also called programming) is carried out by shifting
data into the data register then executing a command that writes
the data into the array. Writes take 200 microseconds. The data
and metadata area of a page can each be written up to four times
between erasures. The intent is to allow the page to be divided
into four 512 byte sub pages (the size of a disk sector), each with
its own ECC. As with reads, the data register may be accessed
randomly multiple times before a write command is issued.

The pages in a block must be written sequentially, from low to
high addresses. Once a page has been written, earlier pages in the
block can no longer be written until after the next erasure. This
restriction adds considerable intricacy to our design.

Block 0 of the device is special. It is guaranteed to be entirely
good, and can be written and erased up to 1000 times without
requiring error correction.

4. PROPOSED DESIGN
As should be clear from the discussion in Section 2, any design
that maps logical block addresses to physical flash addresses in
large contiguous blocks is likely to be subject to high read-mod-
ify-write costs. Instead, we propose a fine-grain mapping at the
level of flash pages which allows writes at or above the size of a
flash page to proceed at maximal speed. Since data transfers are
typically initiated by a block-based file system, we expect most
data transfers to be larger than a flash page. Writes of less than a 2
KByte page are supported with a slight loss of efficiency.

We are particularly careful to create space-efficient volatile
data structures that can be reconstructed from persistent storage
within acceptable time bounds, certainly no more than a couple of
seconds. This constraint rules out designs such as JFFS [11]
which require a full scan of the flash. The algorithms we use for
reconstructing the tables at power up are described later in this
section.

4.1 Data Structures
The data structures used in the design are divided between infor-
mation stored in the flash and data held in tables in a volatile
RAM managed by the controller. The controller is a low power

CPU such as an ARM, typically in a custom ASIC. The structures
described below are for a single 512 MByte die with 4K blocks
and 256K pages. The volatile structures consist of the following:

LBATable. This 256K-element array maps disk addresses to
-

cal block a
contains the flash address (18 bits) of the logical block, plus

-byte sub-page. Note that
the array will actually be somewhat smaller than 256K en-
tries (reducing the total storage capacity slightly), since it is
good to reserve a few erased blocks so that long writes can
be handled without having to compact and erase blocks dur-

is nearly full. Having this reserve pool also means that we

FreeBlocks. This is a 4K-bit vector indicating the set of free
blocks that are ready for reuse.
BlockUsage. This 4K-entry table contains the number of
valid pages in each block. A page becomes invalid when it
no longer contains the most recent copy of the data (the page
will have been written into a new flash location when its
contents were overwritten). The block with the smallest
number of valid pages is the best candidate for erasure when
a new block is needed, since this is the block which will re-
cover the most space when erased. We also use this table to
indicate that a block is bad, so that even if it contains some
valid data, it will never become a candidate for erasure. Each
entry requires 7 bits.
NextSequence. This is a single 32-bit sequence number for
blocks. This number is used to find the most recently written
copy of a given page. When a block is written for the first
time after erasure, this number is written into the metadata of
the first page of the block. It is then incremented.
ActivePage. This variable specifies the currently active
block and the index of the first inactive (erased) page within
it. This value may also indicate that there is no active block.
This value indicates the page which will next be filled when
a write command arrives. There can be at most one active
page at a time.
SequenceList. This 4K-entry table records the 32-bit se-
quence number of each block. It is needed only while the
other data structures are being reconstructed at power-up.

These volatile data structures are organized in such a way that
they can be regenerated rapidly when power is applied, and must
be managed in a way that allows power to fail at any time (be-
cause, for example, the device is unplugged). We assume that
after a power failure, capacitors can provide sufficient energy to
complete any write that was in progress when power failed, but no
new operation may be started after power failure. We do not as-
sume that erasures, which take ten times as long as writes, are
guaranteed to complete once initiated.

In the flash, we maintain two types of page: The first 63 pages
of a block are used to hold actual data, and the last page holds
summary information that describes the remaining contents.

As depicted in Figure 3, each flash data page contains four
512-byte sub-pages and the metadata area. The metadata for each
sub-page contains the valid bit for each sub-page. If the block was

90

bad when it was shipped from the manufacturer, the bad block
indicator (metadata byte 0 of page 0 or 1) will contain a non-FF
value, so this byte must be preserved. (The bad block indicator
field is not relevant for pages 2-63.)

The metadata also holds the logical block address (LBA) as-
sociated with each flash page (18 bits). In the first page of every
block, the metadata also
and an area for a seal, a distinctive bit pattern that is used to indi-
cate that an earlier block erase succeeded without error. (These
last two fields are only relevant for the first page in a block.)
When an erased block is sealed, the distinctive pattern is written
into the metadata of the first page without error correction or de-
tection codes. On the first data write, the seal is set to zero.

All data pages contain both a strong error detection code and
an ECC. The former is used to provide multi-bit error detection
over the page data and metadata. A cryptographic hash such as
MD5 or SHA-1 should work for these purposes, but since there is
no cryptographic adversary in this application, a cheaper function
such as a 128-bit polynomial CRC using a primitive polynomial
[7] would probably work as well. The latter is a single-correcting
double-detecting code that covers the data, metadata, and error
detection code. We perform error-correction and detection on a
whole page basis, rather than using an ECC per sub-page.

When the last data page (page 62) of a block is written, the
summary information for the block is written into the last page of
the block. The summary page contains the LBA and valid bits for
each page in the block (3 bytes per page, or 189 bytes total), as
well as the sequence number of the block. This area is protected
by a strong error detection code, and an ECC covers all this in-
formation, as with the other data pages.

We do not make use of the special properties of block 0. We
for data.

4.2 Power-Up Logic
When the system is first powered, the controller scans the flash to
reconstruct the volatile data structures.

We define the following Boolean predicates on the contents of
a flash page p to help describe our scanning algorithm:
-- Good(p) Subsequent to single-bit error correction, p con-

tains a valid strong error detection code.
-- Erased(p) All bytes in p are FF, including the metadata.

Page 0 and 1 of a defective block will never

both be Erased because the bad block indicator
of one or the other is guaranteed not to be FF.

-- Sealed(p) A seal is present and all other bytes are FF.
(This applies only to the first page of a block.)

We abandon a block whenever we encounter one that is
known bad or suspected of being non-reusable. We do this by
marking in the BlockUsage table that it is not eligible for erasure.
The block remains undisturbed in case any of its pages contain
valid data.

Initially, LBATable is empty. For each potentially-valid page
determined in step (a) or scan (b) below, we update LBATable as
follows. If there is no entry for the page LBA, or if the block

block sequence number (in SequenceList), we update LBATable
to reflect the new LBA to flash address mapping. The latter case
occurs when a Good page exists in the flash that holds old content
for a given LBA. The algorithm above guarantees that LBATable
points to the most recent version of the page.

At power up, we do the following for each block b > 0.
a) We read the last page ps of b. If Good(p), we use the sum-

mary information contained there for each data page in b to
update LBATable, and then go to the next block; otherwise
we proceed to (b).

b) We read the first page p0 of b. If Good(p0) is false we pro-
ceed to (c), otherwise we take the following steps for each
page p of b, excluding the summary page:

If p = p0, we use the page metadata to update
LBATable. We also record b sequence number in
SequenceList.
If p > p0 and Good(p), we check whether the previous
page in this block was erased. If Erased(p-1), b must
have suffered an erase failure, hence we abandon b and
move on to the next block. Otherwise, we have a valid
page and we use the page metadata to update
LBATable.
If Erased(p), we keep track in the ActivePage variable
of the smallest such p in the block with the largest se-
quence number.
When neither Good(p) nor Erased(p) is true, we have
uncovered either a failed erasure or an earlier write er-
ror. In both cases, we abandon b and move on to the
next block.

Error-Correction Code

Error-Detection Code

Block Sequence #

Sub-page validity bits

Seal

Bad Block Indicator

Metadata (64 bytes)

Flash Page

 Sub-page 3 (512 bytes)

Flash Page
Metadata

Figure 3: Flash Page Layout

Sub-page 2 (512 bytes)

Sub-page 1 (512 bytes)

Sub-page 0 (512 bytes)

91

To complete scan (b), we check whether the summary page
is Erased. If not we assume the summary page is bad and ab-
andon b. In either case we move on to the next block.

c) If Sealed(p0), then b is marked as free in FreeBlocks and we
proceed to the next block; otherwise we proceed to (d).

d) If Erased(p0), we check the remaining in b. If
for all such , we seal b and add it to FreeBlocks; otherwise
we proceed to (e).

e) p0 is in an unknown state. We abandon b and proceed to the
next block.

When the scanning process is complete for all blocks, the
BlockUsage table can be constructed by scanning the LBATable
and incrementing an entry each time a page in a particular block is
encountered. BlockUsage can also be built incrementally, as the
flash is scanned.

ActivePage ends up set to the first erased page in the block
with the largest sequence number. If the block noted in
ActivePage has been abandoned (e.g. as marked in BlockUsage),
then we clear ActivePage. There may also not have been an active
block detected in the scan at all, since power could have failed
after the block was filled, but before the next write request arrived
and caused a new free page to be allocated and written (which
also zeros the seal in the
an active block, we just remember in volatile storage that there

will be used (zeroing the seal) when the first write request arrives.
To finish the power up logic, NextSequence is set to the

maximum value in SequenceList plus one.
We handle several types of error conditions, the most proba-

ble being those arising from block erasures and page writes. Since
 across restarts, we must

recognize the results of past failures during the restart scan. We
have no clear model about what a block looks like after a failed
erase. We, therefore, abandon blocks if there is any uncertainty. A
more accurate model of erase failures might allow us to avoid
abandonment in some cases.

If Good(p) and Erased(p) are false in the last bullet of step
(b), we interpret this as evidence of an earlier failure: either a
write error at p or an erase error for b. Detecting such failures is
our primary rationale for employing an error-detection code.
(Write errors can also arise during sealing; we discover these in
step (e)). For erase errors, the block held no valid pages to begin
with. For write errors, we can be sure that no subsequent pages in

contents will have been placed in a new block, and if power failed
before we could do this, the write will not have been acknowl-
edged. It might be tempting to try to erase and recover blocks for
which the power failed during an attempt to erase, but if such a
block is really bad, we will try to erase it on every subsequent
startup, and every attempt will fail. The window for a power fail-

-
-

sient bit errors, we assume that such errors are extremely rare and
that single-bit error correction will afford sufficient data integrity.
Indeed, it seems to be a property of the Samsung flash device that
if an erased page suffers a multi-bit spontaneous (undetected)

error, a subsequent write to it will not detect the failure (although
in our design, a later read can detect the error by checking the
error-correction code). This leads us to believe that, with high

 A careful implementation
might scrub blocks that encounter or correct single bit errors. This
would be done by abandoning the block, moving the data else-
where, erasing the block, and clobbering the first and last page
error detection code so future scans can ignore the block.

Note that normally in step (a), the summary page for full

This means that in the most common case (once all flash blocks
have been written at least once) we will read one page from each
block during startup. If an erasure failed but the summary page

care, since we were trying to erase it anyway. We will conclude at
the end of the scan that it has no valid data pages, and it will be a
candidate for erasure in the near future.

Using the algorithm above, the very first scan of the flash (at
purchase time) will take upwards of 16 seconds (to read every
page and write a seal to every block). However, the flash is guar-
anteed to be completely erased on arrival from the factory (except
for defective blocks). We could take advantage of this by simply
writing a seal on every non-defective page on the very first scan,
and noting this in block 0 so that future scans proceed as de-
scribed earlier. This would avoid reading every flash page the first
time through. This optimization would be unnecessary if sealing is
performed by the manufacturer of the UFD. After the first startup,
the algorithm needs only to read the last page of each block in the
normal case, which can complete in less than a second.

Our algorithm does not require any form of nonvolatile bad
block table. Bad blocks simply never appear in the volatile data
structures, so they are invisible and unusable.

4.3 Writes
Write commands that write a full 2 KByte page are simple. The
ECC bits and strong error-detection code are calculated for the
data, the data and ECC is shifted into the chip, and a write com-
mand is issued. When it returns without an error, the write is ac-
knowledged and the active page for the block is incremented. If a
write error occurs, the block is abandoned, a new erased block is
allocated, the data is written into its first page (with a new se-
quence number), the write request is acknowledged and the active
block and page are updated (in principle, this write can fail too,
and we do it again, with yet another new active page). Typically, a
single write command will write many 2 KByte pages in a single
USB mass storage request. These writes can be overlapped when
there are two dies within a package, raising the write bandwidth to
nearly the transfer rate of the bus (20 MBytes/second).

Writes to a partial page are trickier. If the page exists in
LBATable, and it contains valid 512 byte sub-pages that are not
among the sub-pages to be written, we must read the old location,
merge the old and new data, and write the result to the active
page. On errors, we proceed as described earlier.

Note that for both full- and partial-page writes, a given page is
written exactly once. The first page of a block is written twice,
once when the seal is written after the block is erased, and once
more when it is used for data (at which time the seal is zeroed).
Each page write (except for sealing) must include computation of
both error-correcting and error-detection codes. The error detec-

92

tion code need not be validated during normal reads, although as
mentioned in the previous section, spontaneous multi-bit errors
can be detected by doing so.

The current algorithm uses a chunk size which defines a
minimum number of logical sectors that are always written to-
gether as a unit. Our chunk size happens to coincide with the flash
page size. So, for example, a write of one sector maps to a write
of a full 2 KByte page (possibly preceded by a read of the 3 other
sectors from the flash). We could choose to use a larger chunk
size, for example 4 KBytes or 8 KBytes. This would increase the
read-write overhead for partial chunk writes, but it would also
decrease the number of entries in LBATable. This could be done
without affecting the remainder of the algorithm: for example the
page-based error correction logic would be unchanged.

We could also have considered a design in which partial page
writes are handled more gracefully by providing separate error
correcting codes for each 512 byte sub-block. There is sufficient
room in the metadata area to do this, but we would have to forgo
the increased protection of using a large (128-bit) error detection
code, since there is insufficient room for four such codes. Moreo-
ver, since modern operating systems rarely write to disk at a gra-
nularity of less than 2 KBytes, the extra flexibility offered by sep-
arate sub-blocks would not yield a substantial performance gain.

4.4 Erasures
Erasing blocks is a background task, done when the number of
erased blocks falls below some threshold. The block with the
smallest number of valid pages is chosen for erasure unless it is
marked as abandoned in BlockUsage. Any valid pages are moved
to the active block, updating the main table entry for each page.
An erase command is then issued. If it completes without an error,
we write the seal into the first page of the block, and put it on the
free list. If the erase fails, we abandon the block without writing

free list.
In storage systems that involve flash memory, it is important

that erasures be distributed evenly across the flash array. We do
not propose a specific algorithm for wear leveling, but we note
that it is possible to store the number of times a block has been
erased in the metadata of the first page of the block. This erasure
count can be written during sealing. Although there is no error
correction code written during the sealing operation, an invalid
erasure count would result in imperfect wear leveling, not data
loss, and this might be acceptable. Similarly, if the power fails
after an erasure but before a seal can be written, the erase count
will be lost (and presumably reset to zero).

In the presence of erasure counts, we can easily maintain a
volatile data structure that contains this datum for all blocks. This
requires that an erasure count be included in each blo -
mary page so that it can be recovered during the normal startup
scan of occupied blocks. Using this data structure, we can cause
the background recycler to consider low-erasure-count blocks as
candidates for the free list, even full blocks that are normally poor
candidates for erasure.

Note that the existing mass storage interface does not allow
the UFD to know whether a given logical page is currently being
used to store meaningful data. To get around this, Bartels and
Mann [2] implement a block deletion API in their Cloudburst
system. Although it is possible we could store the information

gained from such an API in a recoverable manner, we choose to
rely on a reserve pool (as described in Section 4.1) to guarantee
that the recycler can produce clean blocks in a timely fashion.
Although this reduces the overall capacity of the system some-
what, it is both simple and portable.

5. CONCLUSION
It is clear that the approach described here is quite different than

Unfortunately, UFD
manufacturers treat their designs for translation-layer firmware or
ASICs as trade secrets, and are reluctant or unwilling to describe
them in detail. This makes it difficult to do an independent as-
sessment of the reliability and performance of their techniques.

We believe our design should provide both high performance
and a high level of reliability. Its biggest drawback is the size of
the volatile data, which may be larger than a simple controller
ASIC can accommodate. We are considering ways to reduce the
size of the tables, primarily the main array. We believe it highly
unlikely that acceptable random access write performance can be
achieved in a UFD device without the availability of volatile
RAM to hold data structures similar to those we have described.

6. REFERENCES
[1] M. Annamalai, A. Birrell, D. Fetterly, and T. Wobber.

Implementing Portable Desktops: A New Option and Com-
parisons. Microsoft Corporation Technical Report MSR-
TR-2006-151, October 2006.

[2] G. Bartels and T. Mann. Cloudburst: A Compressing, Log-
Structured Virtual Disk for Flash Memory. SRC Technical
Note 2001-001. Compaq Systems Research Center. Febru-
ary 27, 2001.

[3] F. Douglis, R. Cáceres, F. Kaashoek, K. Li, B. Marsh and J.
Tauber. Storage Alternatives for Mobile Computers, In Pro-
ceedings of 1st Symposium on Operating Systems Design
and Implementation (OSDI), November 1994.

[4] Kingston Technology Company, Inc. Data Traveler Elite.
http://www.kingston.com/flash/dt_elite.asp.

[5] Lexar Media, Inc. JumpDrive Pro. http://www.lexar.com/
jumpdrive/jd_pro.html.

[6] M-Systems Inc. http://www.m-systems.com/site/en-
US/Products/IDESCSIFFD/IDESCSIFFD/Products_/IDE_P
roducts/FFD_25_Ultra_ATA.htm.

[7] M. Rabin. Fingerprinting by random polynomials. Report
TR-15-81, Center for Research in Computing Technology,
Harvard University, 1981.

[8] M. Rosenblum and J. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems, 10 (1) pp. 26-52.

[9] Samsung Electronics. 512M x 8Bit / 1G x 8Bit NAND
Flash Memory. K9W8G081M/K9K4G08U0M Flash Mem-
ory Datasheet.

[10] USB Implementers Forum. Universal Serial Bus Mass Sto-
rage Class Specification Overview, Revision 1.2.
http://www.usb.org/developers/devclass_docs/usb_msc_ove
rview_1.2.pdf, June 2003.

[11] D. Woodhouse. JFFS: The Journalling Flash File System.
Red Hat, Inc. http://sourceware.org/jffs2/jffs2-html/.

93

