
Secure Communication Using Remote
Procedure Calls
ANDREW D. BIRRELL
Xerox Corporation

Research on encryption-based secure communication protocols has reached a stage where it is feasible
to construct end-to-end secure protocols. The design of such a protocol, built as part of a remote
procedure call package, is described. The security abstraction presented to users of the package, the
authentication mechanisms, and the protocol for encrypting and verifying remote calls are also
described.

CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General-
security and protection; C.2.2 [Computer-Communication Networks]: Network Protocols-pro-
tocol architecture; D.4.6 [Operating Systems]: Security and Protection-cryptographic controk

General Terms: Design, Experimentation, Security

Additional Key Words and Phrases: Remote procedure calls, transport layer protocols.

1. INTRODUCTION

Many computing environments now exist in which frequent and substantial parts
of the activities involve communication among computers linked by open net-
works. A user may well spend most of his time at a personal computer and use
networks for transferring data to and from other personal computers or shared-
server computers such as printers, file servers, and mail servers. Most of the
networks (and internetworks) used for these activities are open in the sense that
they are readily vulnerable to eavesdropping and interference from unauthorized
intruders. Such an architecture presents security problems much different from
the ones traditionally faced in monolithic time-sharing systems. In particular, it
is clear that security must be based on the use of encryption in the communication
protocols. Fundamentally, encryption permits the establishment of a data chan-
nel that is less open than the underlying internetwork, by arranging that only
authorized parties can create, inspect, and/or modify some or all of the data.
Establishing, using, and maintaining such a secure data channel requires the
resolution of multiple problems. First, it is necessary to identify the authorized
parties (traditionally called principals). Second, it is necessary to convince each
principal that the others are indeed who they claim to be. (This step is tradition-

Author’s present address: Digital Equipment Corporation, Systems Research Center, 130 Lytton
Avenue, Palo Alto, CA 94301.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying’is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0734-2071/85/0200-0001$00.75

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985, Pages 1-14.

2 l Andrew D. Birrell

ally termed authentication.) Third, it is necessary to transfer the actual data in
a manner that is not vulnerable to various known threats. The second and third
of these are inevitably interdependent, since a recipient may require convincing
that each particular datum did indeed come from the asserted sender.

There are several discussions in the public literature about designing commu-
nication protocols to achieve various forms and levels of security. Much of the
published material is concerned with particular aspects of the overall problem,
such as the design and improvement of authentication protocols [1,4, lo]. There
is less material available describing how to construct a complete secure commu-
nication protocol. A recent report by Voydock and Kent [ll] gives a thorough
description of one such design, including substantial description of the supporting
arguments for their design. There are disappointingly few real implementations
of secure protocols. The purpose of this paper is to describe the construction of
such a protocol.

It is possible to include secure communication at various levels in a commu-
nication protocol hierarchy. At the physical layer, security can be achieved by
various noncryptographic techniques that prevent tampering with the commu-
nication medium itself. At the data link layer, it is possible to encrypt all traffic
on each link using a code whose key is shared among all nodes directly connected
to that link. This is termed link encryption; it protects against intruders from
outside the community that shares that data link, but does not distinguish
principals within that community. When a communication path is formed from
a network consisting of multiple data links, link encryption allows intrusion by
members of the trusted community of every data link traversed by the path. The
lowest layer at which we can provide an end-to-end guarantee is the network
layer, where we introduce direct node-to-node addressing of packets. But in most
communication architectures (including ours) it is :iot until the transport layer
that end-to-end security is feasible. The transport layer is the lowest level at
which enough state information is kept to establish the authenticity of incoming
data in successive packets of an interaction. It is the transport layer where we
are first concerned with the relationship between successive packets. Here we
introduce code that handles packet sequencing, detects missing or repeated
packets, and retransmits to recover from lost or malformed packets. These
mechanisms are similar to those needed to implement a secure protocol, and so
we have chosen to introduce secure communication as an aspect of the transport
layer protocol.

One could also introduce security facilities at higher levels. However, doing so
would reproduce many of the checking mechanisms already present in the
transport layer. These mechanisms have always been difficult to design and
implement and often significantly reduce efficiency. Implementing them twice
seems undesirable. It would also reduce the utility of the secure protocol, since
the easiest way to communicate would likely be by using the transport layer
directly. This is particularly true of remote procedure calls, where a major purpose
is to simplify the task of communicating by providing a single simple and widely
shared mechanism: procedure calls. If security were something that required
extra programming beyond the procedure invocation itself, then it would intrude
on the aim of easy communication.
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Secure Communication Using Remote Procedure Calls l 3

Large parts of our security design are derived from previous work. A moderate
understanding of previous work is needed for proper appreciation of the remain-
der of this paper; the report by Voydock and Kent [ll, 121 is a good introduction.
As discussed in Section 3, we use the federal Data Encryption Standard (DES)
for our encryption [B]. This choice is dictated largely by the availability of very
fast (and cheap) hardware for DES. Hence, our schemes are based on the use of
priuate keys (instead of public keys [S]). For our purposes it would be impractic-
able to have each pair of principals that want to communicate share a private
key, so our scheme is based on the use of an authentication service (also known
as a key distribution center). Thus each principal has a single private key known
only to the principal and the authentication service. When two principals wish
to communicate, they negotiate with the authentication service to obtain a shared
conversation key. This conversation key is used to encrypt subsequent commu-
nication between the two principals.

The design presented here arose as part of a project to implement remote
procedure calls (RPC) on the Xerox research internetwork. The overall design
of this RPC package has been reported in [3]. Prior to the construction of this
RPC package, there were no encryption-based protocols in the internetwork.
Previous protocols transmitted passwords as clear text whenever any authenti-
cation was desired. Part of the design of this RPC package included a new
transport layer protocol, and this seemed like an ideal opportunity to include
security features at the correct level in the protocol hierarchy. An additional
factor that enabled a secure protocol to be introduced was that most software
using the research internetwork had recently converted to using Grapevine [2]
as the primary authority for naming and authenticating individuals and services.
This allowed us to envisage using Grapevine as the mediator in the negotiation
to establish the authenticity of the principals involved in secure communication.

2. THE SECURITY ABSTRACTION OFFERED TO CLIENTS

Clients of our RPC package interface to its security facilities by dealing in
conuersutions. A conversation represents a communicating pair of security prin-
cipals; during secure communication, one of these principals is an implementor
of a remote procedure, and the other is a caller on that procedure. A client can
create a conversation by presenting the RPC run-time system with his name and
private key and the name of the other principal. Subsequently, if that conversa-
tion is an argument of a remote procedure call, the RPC run-time system ensures
that the call is performed securely using a conversation key known only to those
two principals. We guarantee to the caller and callee that they are the two
principals nominated when the conversation was created. (More precisely, we
guarantee that the caller and callee are each trusted by one of those principals,
to the extent of having been told the conversation key by one of them.) When a
server is invoked for an incoming call with a conversation as argument, the server
may ask the RPC run-time system for the name of the other principal in the
conversation. Thus, our clients never deal explicitly with encryption, but they
get the appropriate guarantees. Creating a conversation involves an interaction
between the principal who wishes to create it and the authentication service (as
described in Section 4). Using a conversation to make a remote call (described

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

4 ’ Andrew D. Birrell

in Section 5) involves only the two principals-the authentication service is not
concerned with this.

For example, if principal A wishes to communicate securely with principal B,
then A’s program would include a call on the RPC run-time system of the form:

conv t R.P.C. Create Conv [from: nameOfA, to: nameOfl3, key: privateKeyOfA]

Principal A could then make remote calls to a procedure P.Q implemented by B
such as:

x t P.Q[thisConv: conv, arg: y]

Inside the implementation of P.Q, principal B could find the identity of his caller
by a call on the RPC run-time system of the form:

caller t RPC.GetCaller[thisConv]

This concept of conversations is orthogonal to the other abstractions involved
in a call. Multiple processes can participate in a single conversation; there may
be multiple simultaneous calls in a conversation; calls can be made through
multiple remote interfaces but still be part of the same conversation. Calls may
be made in either direction in a conversation, independent of which principal is
the caller and which is the callee. Indeed, it would be consistent for many
machines (with the same two principals) to participate in a single conversation,
although we have not implemented this.

Note that we restrict a secure conversation to a pair of principals. We do not
directly support multiparty conversations, although they may be emulated by
pairwise two-party conversations. Nor do we support third party operations. For
example, if a user A calls a server B to perform some operation, the server B
cannot communicate securely with a third principal C (on a third machine) to
perform some action on behalf of A merely by providing the authentication
information that B obtained from A. To support such interaction, it would be
necessary for A to establish a conversation between himself and C, then give B
enough information (particularly, the authenticator and conversation key) to
allow B to participate in the conversation. Such interactions can be made securely
and are not ruled out by our package, but we provide little aid for them.

When building a secure system of any sort, it is important to be clear about
the threats that are being countered. We guarantee to the caller that his call will
be performed only by a callee whose name the caller has nominated. We will tell
the callee the true name of the caller. Calls cannot be observed in transit, to the
extent that an intruder cannot determine which procedure is being called, nor
any information about the arguments or results (except their length). An intruder
cannot make undetected modifications to calls and results while they are in
transit. An intruder cannot cause the invocation (or replay) of a call. We do not
attempt any protection against traffic analysis or against denial of service
(although clearly a caller will notice if his remote call does not complete because
of a denial of service attack). It is also important to be aware that these guarantees
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Secure Communication Using Remote Procedure Calls 5

are not absolute. The best that can be offered is that we make it prohibitively
expensive for an intruder to violate these guarantees. The aim is to make that
expense greater than the value to the intruder. The communicating principals
should trust these security guarantees only to the extent that they trust the
authentication service, the encryption algorithm, and each other.

3. ENCRYPTION ALGORITHMS

As mentioned in Section 1, we use the federal Data Encryption Standard (DES)
for our encryption. We made this choice primarily because DES has been
implemented in cheap, fast hardware. (The fastest chips run at about 14 megabits
per second.) There has been some controversy over the cryptographic strengths
and weaknesses of DES, but these are not important to our design. The design
would be unaffected by a choice of any other private-key encryption algorithm.
Our detailed packet formats allow for multiple encryption algorithms and for key
lengths up to 128 bits. Use of a public-key system [6] would have a large impact
on the authentication protocol.

Basically, DES maps 64-bit blocks of plain text into 64-bit blocks of cipher
text. That basic mapping hides the data but does not hide patterns (such as
repeated blocks of zeros) and does not detect modifications. The cipher block
chaining, or CBC, mode of DES [9] hides the patterns but still does not guarantee
that modifications will be detected. We use the CBC mode with the addition of
a 64-bit checksum encrypted at the end of the packet. This checksum is formed
by accumulating the 64-bit exclusive-or of the plain text blocks (this is performed
by hardware in parallel with the encryption). This technique reduces the proba-
bility of most undetected modifications to 2-64. This assertion is based on the
observation that from the point of view of an intruder who does not know the
conversation key, modifying a block of cipher text produces an unpredictable
modification to two blocks of plain text when the cipher text is decrypted. It is
fairly simple to show that a random modification to 64-bits of plain-text has
probability 1 - 2-‘j4 of changing the resulting checksum. An alternative modifi-
cation to CBC mode, which we rejected because the requisite extra hardware
would be more complicated, has been proposed by Ehrsam et al. [5]. Remember
that an intruder has an a priori probability of 2-56 of guessing the conversation
key at his first attempt.

Unfortunately, Voydock and Kent have recently pointed out that both of these
schemes for detecting modifications to cipher text are inadequate [12]. If an
intruder swaps two adjacent cipher text blocks, the change might not be detected.
We have not yet modified our protocols to repair this defect.

We assume that users choose (or are issued) sufficiently random private keys
[7]. Temporary keys, CBC initialization vectors, and conversation keys should
be generated by the authentication servers using a hardware random number
generator.

In the descriptions in the following sections, we have omitted some details.
These details are quite systematic, being the modifications needed for secure
distribution of CBC initialization vectors, for avoidance of transmissions of
cipher text for known plain text, and for minimizing the amount of data encrypted
with long term keys. All these details are given in full in Section 8.

We use the notation {P) K to indicate the cipher text formed by encrypting
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

6 l Andrew D. Birrell

plain text P using encryption key K. In each context, if P is an encryption key,
we intend straightforward single-block use of DES, and otherwise we intend
encryption using the CBC mode with the checksum described above.

4. AUTHENTICATION

There is substantial literature on protocols for implementing this negotiation [1,
4, lo]. The protocol we use is based primarily on Needham and Schroeder’s [lo],
modified slightly to improve some shortcomings and rearranged to meet our
efficiency goals.

This protocol relies on the presence of a trusted authentication service. We
use the Grapevine distributed system [Z] as our authentication service. Grapevine
provides a distributed replicated database indexed by strings known as RNames.
Several values may be associated with an RName. One such value is used as the
private key for security principals.

Our authentication scheme creates an authenticator. An authenticator is en-
crypted data that one principal can use to assure the other of his identity. When
principal A passes an authenticator to B, the assurance is based on B’s observa-
tion that someone who knew B’s private key (namely, the authentication service)
promises that the imbedded conversation key was given only to principal A. B
may as well believe the assurance, because the only alternative is that B’s private
key has been compromised. The authenticator takes the form

ICK T, AIKE,

where CK is a conversation key, A is A’s name, T is the time at which the
authenticator was created, and KB is B’s private key. T is used to limit the
damage potentially caused by a compromised private key, by limiting the lifetime
of an authenticator to a few hours.

To obtain an authenticator, A calls the procedure RPC.CreateConv provided
by the RPC run-time system on A’s host, giving it A’s name, B’s name, and A’s
private key. The RPC run-time system calls the authentication service remotely
(without additional encryption) giving it

[A B, Xl,
where A and B are the principal names and X is a nonrepeating 64-bit number.
(Alternatively, X may be chosen pseudorandomly or randomly.) The authenti-
cation service returns

(authenticator, X, B, CK)“A,

where KA is A’s private key and CK is the conversation key, also imbedded in
the authenticator.

The RPC run-time system on A’s host may now obtain the conversation key
and authenticator and is assured that it and CK were issued by the authentication
service for communication between A and B. Additionally, the RPC run-time
system generates a permanently unique identifier for the conversation. Later,
when A asks the RPC run-time system to make a remote call using this
conversation, it has available the authenticator, the conversation key, and the
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Secure Communication Using Remote Procedure Calls 7

unique identifier. In Section 5, the first part of Figure 2 shows the operation of
creating a conversation.

The permanently unique identifier of a conversation is created by concaten-
ating the unique identifier of this processor with a sequence number. When the
run-time system is first started, this sequence number is initialized from a one-
second real-time clock, and the values used for unique identifiers never exceed
the current value of that clock. This restricts the rate of generation of new
conversations on a single processor to a long-term average of one per second,
although the burst rate may occasionally exceed one per second.

Note that in order to return the authenticator, the authentication service uses
the private keys of both principals. Since the Grapevine database is distributed,
both of these keys might not be known by any single Grapevine host. So to
respond to the request a Grapevine host may need to communicate in a secure
fashion with another Grapevine host. The Grapevine servers are capable of
communicating securely among themselves, since they are themselves security
principals registered in a part of the database that is replicated on every Grapevine
host.

It is important to remember that the entire security of this scheme depends on
the security of the authentication service’s database. Ultimately, this must depend
on the physical protection of the hosts maintaining this database.

5. MAKING SECURE CALLS

The structure employed for our RPC package (as we have described in [3]) is as
follows. A caller initiates a remote call by making a local call to a specially
constructed user stub module. This stub takes the arguments of the call and an
identification of the desired procedure and places them in one or more packets
that it passes to the RPC run-time system. The run-time system is responsible
for transmitting the packets reliably to the remote host and waiting for a response.
In the remote host, the packets are received and are passed to the appropriate
sewer stub module (also specially constructed). The server stub unpacks the
arguments and makes an ordinary local call to the appropriate procedure. When
this local call returns, the server stub takes the results and places them in one
or more packets, and the RPC run-time system communicates them to the caller
machine, where they are given to the user stub. The user stub then takes the
results and returns from the original local call. This structure is depicted in
Figure 1, and is described in much more detail in [3]. This earlier paper also
describes our binding mechanism, whereby a caller determines which host imple-
ments a desired remote procedure.

The stub modules are generated mechanically by a program known as Lupine.
This program gives special treatment to procedures that have an argument whose
data type is that used for conversations. In the user stub generated for such a
procedure, the code for transmitting the call packets passes the conversation in
to the RPC run-time system when asking for the packets to be transmitted. Thus
the RPC run-time system knows to encrypt the packets and has access to the
appropriate information to do so. Similarly, the RPC run-time system tells the
server stub for such a call which conversation is being used, so it is passed as an

ACM Transactions on Computer Systems, Vol. 3, NO. 1, February 1985.

8 l Andrew D. Birrell

Caller machine Network Callee machine

User Userdub RPCRuntime RPCRuntime Server-stub Server

importer
I

exporter

transmit
Call packet

\L
wait

\L Result packet
receive

importer exporter

interface
I I

Fig. 1. The components of the system and their interactions for a simple, nonsecure call.

argument to the server implementation of the procedure and can be used to
obtain the name of the principal who is the caller.

When making a secure call, the RPC run-time system must take extra steps
to encrypt the call; this is easy, since the conversation passed as argument is, in
fact, a pointer into the RPC run-time system’s data structure, giving it the
conversation key and conversation identifier. When receiving such a call, the
RPC run-time system must ensure that it has (or obtains) the information about
that particular conversation. To describe how this is achieved, we will describe
first the steady state, and then we will describe how we reach that state.

To support secure calls, the RPC run-time system on each machine maintains
a hash table mapping the unique identifier of a conversation into a data object
giving the principal’s names and the conversation key. Remember that this
identifier is unique over all hosts and all time. To allow secure calls, we have
added a field to our packet headers to contain (as plain text) the conversation
identifier. Other plain text fields are the internetwork source and destination
host identifiers and an identifier of the calling process. The remainder of each
packet is encrypted using CBC with the checksum described in Section 3. The
encrypted part of the packet contains additional protocol information, particu-
larly the sequence number of this call (relative to the calling host and process),
the identifier of the calling process, and the sequence number of this packet
relative to this call. We use the term call identifier for the set of fields

[calling-host, calling process, call-sequence-number].

On receipt of a packet participating in a secure call, the conversation identifier
is looked up in this hash table to find the conversation key, and the remainder
of the packet is decrypted. The decrypted packet is checked to ensure that the
CBC checksum is valid. Failure of this check indicates that the packet is not
genuine. We do not distinguish between errors caused by an intruder and
transmission, although this could be done quite easily by adding another check-
sum layer around the entire packet. (In practice, transmission errors are quite
rare at this level in our communication environment, so the occurrence of
frequent errors would be cause for investigation.) The RPC run-time system can
then consider the remainder of the packet to determine whether the packet starts
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Secure Communication Using Remote Procedure Calls 9

Caller machine Authentication Service

, .
User

Create

4-J -

Call -

I:
-- -

Call

RPC + Stub

GetAuth I
GetAuth[A,B,X]

>
Lookup KA

New ConvlD Lookup KB

((CK,T.A)KB, X, 8, CK)KA
Build Authenticator

Store CK. Auth Encrypt and send

Return 4

Callee machine

--.

Call[ConvlD. (CalllO,)CK]

RPC + Stub

Lookup ConvlD

= > not found

RFA[rfalD, ConvlD, (CalllD)CK, Y]
Send RFA

[rfalD, B. ICatltD.Y)CK, ICK,T,A)KB] ~z~~~zt~pkt

, Result[ConvlD. (CallID.)CK]

Call[ConvlD. (thisCalllD. . ..]CK]
Lookup ConvlD

Decrypt Call Pkt

Result[ConvlD, (thisCalllD, . ..)CK]
Encrypt, Send

Server

Do call

?eturn

- --

Do call

qeturn

I-

Fig. 2. Communication for secure calls. The first part of the figure shows the creation of a
conversation and its corresponding authenticator (a&h) and conversation identifier (ConuZD). The
last part shows a normal secure call. The middle part shows the interactions when the RFA protocol
is needed for the callee to establish or re-establish his connection state.

a new call, is part of an ongoing call, or is a duplicate of some old call. This
determination is just as it would be for nonsecure calls and uses the same data
structures. Note that we are using the mechanisms for eliminating duplicates
that may happen in any transport protocol to simultaneously eliminate replays
maliciously injected by an intruder. (This is discussed further in Section 6.) A
typical secure call is shown at the end of Figure 2.

We have assumed the existence in the server of a mapping from conversation
identifier to caller and conversation key. Further, the table used by the server to
eliminate duplicate calls (which gives the sequence number of the last call from
each process on each host) is part of the security arrangements, since it is this
that prevents an intruder replaying an old call. Clearly, these mappings must be
established initially in a secure way, by some form of connection establishment
protocol. In our package, this is achieved by a technique that also permits the
server to discard this information when the connection is idle. This is achieved
by a form of call-back, known as a request for authenticator, or RFA. When a
server receives a call packet whose conversation identifier is unknown to the

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

10 ’ Andrew D. Birrell

server (and which, therefore, the server is unable to decrypt), the server sends
an RFA packet back to the calling machine. The RFA packet contains

[conversation-identifier, (call-identifier]CK, Y],

where Y is a 64-bit number chosen by B such that this value of Y is not
predictable by an intruder. For example, B could generate Y by using DES as a
random number generator with a seed known only to B. Since the server does
not yet know the conversation key, it cannot perform any encryptions or
decryptions yet, but {call-identifier) CK is available to the server from the initial
part of the (still encrypted) packet. (This encryption is defined to use purely
CBC, with no checksum.) On receiving the RFA, the caller (who is A) returns a
packet containing

[B, (call-identifier, YjcK, authenticator].

This allows the server B, to obtain the conversation key and A’s name from the
authenticator. The call identifier in the response assures the server of the current
call sequence number for the calling process contained in the call-identifier. The
server decrypts the original call packet and verifies that its call identifier matches
that in the RFA response. The number Y bound in with the call identifier in the
RFA response assures the server that the RFA response is not a retransmission
and hence that the call is not being replayed by an intruder. The inclusion of B’s
name in this response is purely to enable the RPC run-time system to decrypt
the authenticator without consulting higher-level software; an incorrect name
here would cause the packet decryption to fail. The use of this RFA protocol for
the first call of a conversation is shown in the middle of Figure 2.

The server now has the information it needs for accepting steady-state calls.
This has cost two extra packets, which is minimal for any form of connection
establishment. The server may discard this information after a suitable period
with no calls from A, since the information can be obtained by the server
whenever it wishes. Thus we do not require a connection termination protocol.

Additionally, the server should limit the lifetime of the conversation by using
the time given in the authenticator to reduce the damage caused by a compromised
private key or conversation key.

6. PREVENTION OF REPLAYED CALLS

The most complicated of the threats we are preventing is that we do not let an
intruder cause the server to invoke a call more than once. Basically, this is
achieved by the mechanism that eliminates duplicate calls on the basis of the
securely transmitted call identifier. This mechanism is initialized securely (and
restored securely if the server discards it) by the RFA mechanism. However,
there are several subtleties in this.

Note that we specified the permanent uniqueness of the conversation identifier.
If somehow an intruder caused a principal to reuse a conversation identifier from
some previous conversation, the only possible adverse effect with probability
more than 2-56 is denial of service. This would happen if the server’s table still
contained an entry for that conversation identifier: in that case, the server would
incorrectly believe that it knew the conversation key, and so the checksum would
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Secure Communication Using Remote Procedure Calls l 11

look wrong when the caller’s packets were decrypted. A replayed call would be
accepted only if the conversation identifier was reused with the same conversation
key. Since conversation keys are allocated securely and randomly on the caller’s
behalf by the authentication service, the replay is accepted with probability 2-56.

A similar argument applies to the identifier of the calling machine. We used
this when looking up the conversation identifier in the server’s table, and we did
so by believing information transmitted unencrypted in the packet header. The
only effect of the intruder modifying the packet header would be that we would
decrypt the packet with the wrong conversation key (except for a 2-56 probability),
and this would be detected by our checksum arrangements. Because of this, we
can optimize by not including the caller’s machine identifier in the secure part
of the packet at all.

We also are relying on the uniqueness of the call identifiers. Each call identifier
has three parts: a machine-relative monotonic sequence number, a machine-
relative process identifier, and a global machine identifier. The sequence number
does not need to be permanently unique, since, for a call to be considered at all,
its permanently unique conversation identifier must be approved by the caller
responding to the RFA. However, within a conversation, the sequence number
must be nonrepeating: since we use a 32-bit field this limits us to 232 calls per
conversation. Other security considerations restrict the reasonable lifetime of a
conversation to less than this. The caller can straightforwardly ensure the
machine-relative (nonpermanent) uniqueness of the process identifier. The ma-
chine identifier is not transmitted with the call identifier, since it may be picked
up from the packet header and verified while looking up the conversation
identifier. Again, the possibility of an intruder causing a caller to use a duplicate
machine identifier is not a problem (beyond the 2-“j probability of identical
keys), since it would cause the server to decrypt the packet using the wrong
conversation key.

The period for which a server maintains the connection-state information
must be guaranteed to be longer than the maximum length of time for which A
is willing to continue retransmitting a call packet. Otherwise, an intruder could
wait until a call has been invoked, suppress all further packets between B and A,
wait until B has discarded the state information, and then allow a retransmission
and subsequent packets (including the RFA) to get through. This would have the
effect of causing the call to be invoked twice. This remarkably unlikely event is
depicted in Figure 3. It is prevented by the server keeping its state information
for a long enough period. Note that this only requires clocks that run at
approximately the same rate, not synchronized clocks.

7. COSTS OF SECURITY

When embarking on this project, we had naively believed that the major cost of
including security facilities would be the encryption itself. In practice, this is far
from true. The hardware we plan to use for DES performs encryption at up to
14 megabits per second (faster than any of our communication networks), but
making our protocols secure has added significant complexity and cost to them.
The discussion of the prevention of replayed calls showed how the amount of
information needed to identify a packet is increased by the security requirements.

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

12 l Andrew D. Birrell

Caller machine

User User call r
RPC + Stub RPC + Stub

send call pkt

Wait for ack

Retransmit Retransmit

Wait for ack Wait for ack

Retransmit Retransmit

Watt for ack Watt for ack

and so on and so on

Retransmit Retransmit

Wait for ack Wait for ack

Lookup ConvlD Lookup ConvlD

Respond Respond

Wait for pkt Wait for pkt

I I

Call[...] 3

Call[...] l

,

Call[...] ’
,

Call[...] *
I

3FA[...]

?eply[...] ,
I

Intruder Callee machine

allow

suppress

suppress

suppress

suppress

allow

allow

allow

-1 Retransmit

Wait for ack

and so on . .

Timout, Flush

Lookup ConvlD

= > not found

Send RFA

Store CK, etc

Server

jo call

‘eturn

)o call
again!

1

Fig. 3. A security loophole if a server discards its connection state too early. Merely by suppress-
ing appropriate packets, the intruder could cause a call to be invoked twice. This is described in
Section 6.

In nonsecure protocols, much smaller identifiers are adequate because we are
confident that we will not encounter day-old packets. In the secure protocol the
possibility of an active intruder causes us to make our packets permanently
uniquely identified. In total we use 14 bytes to identify a call: 2 bytes for the
machine identifier, 4 bytes for the conversation identifier, 4 bytes for the call
sequence number, 2 bytes for the process identifier in the clear text, plus another
2 in the cipher text. This adds significantly to the minimum packet transmission
time and to the time required to construct or interpret the packet. We could
perform adequate duplicate elimination for nonsecure calls by using a 2-byte
machine identifier, 2-byte call sequence number, and 2-byte process identifier.
The size could be reduced significantly by more subtle encodings, but only at the
cost of processing time in interpreting and verifying it. We also must maintain
and look up the table in the server giving information about each conversation.
The packet exchange of the RFA mechanism is required solely for secure calls.

We are not unhappy about these costs, though. The cost of security is not very
high, and we are happy to pay it in order to get away from our previous completely
unprotected state. Of course, there is no need for all clients to pay the cost of
security. Those making nonsecure calls can happily use the simpler protocol we
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

Secure Communication Using Remote Procedure Calls 13

described in [3]. We also offer an intermediate style that uses secure authenti-
cation but does not encrypt the calls themselves.

8. ADDITIONAL DETAILS OF THE SECURITY PROTOCOL

Cryptologists are aware that a cipher is often more easily broken if the cipher
text for known plain text is available or if large amounts of cipher text are
available encrypted with a single key. With DES it is not clear how important
these threats are, but since the preventative measures are quite simple, we have
included them in our security protocols. Similarly, the initialization vector used
by the CBC mode of DES must be randomly chosen and securely distributed if
the first plain text block is known or has only a small amount of unknown
information. Some encryption hardware encourages a style of usage where the
principal’s private key is loaded into the unit only once (possibly manually) and
encryption is always by working keys, which are presented to the unit encrypted
with the private key; the working keys and the private key need never occur
outside the encryption hardware as plain text. In the following, KX and KY are
temporary keys and J is an initialization vector, randomly chosen by the authen-
tication service.

The authenticator is in fact

{KX]‘@{ {CK)KB, T, A)KX.

This CBC encryption uses a zero initialization vector; it is important that { CK 1 KB
is the first plain text block, since this value is unknown to an intruder. When
the authentication service is sending the authenticator back to A, it actually
sends

(KYjKA{ J, authenticator, X, B, CKjKY.

This CBC encryption uses a zero initialization vector; it is important that J is
the first plain text block, since this value is unknown to an intruder. The packet
returned in response to an RFA packet actually contains

[B, (J, call-identifier, Y)CK, authenticator).

Again, the CBC encryption uses a zero initialization vector. When packets in
calls are encrypted in this conversation, J is used as the initialization vector.
Remember that all encryptions other than encrypted keys use CBC mode with
an additional checksum to detect modifications.

9. STATUS AND CONCLUSIONS

Our remote procedure call package is fully implemented and is in daily use by a
number of applications. The protocol for accessing the Alpine file servers (which
provide a file system featuring distributed atomic transactions) uses our security
features, as does the control protocol for an ethernet-based voice project. Both
of these applications have found the security mechanisms entirely painless to
use.

Unfortunately the present implementation is not yet complete. First, most of
our computers are not yet equipped with DES hardware, so at present we are

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

14 l Andrew D. Birrell

using a trivial exclusive-or scheme in place of a genuine encryption. Second, we
have not yet retrofitted the Grapevine servers to support the secure authentica-
tion protocol. We are confident that neither of these changes would seriously
disturb our implementation, but they do make it impossible for us to measure
the performance impact of encryption.

We are happy with our decision to include secure communication in this
package. It has enabled us to explore in detail the implications of our previous
theoretical designs for secure communication. It has shown that secure commu-
nication can be successfully included in our protocol family, and that security
can be presented to programmers as a communication facility that is easy and
convenient to use. Once we have suitable hardware in place, we will rapidly be
able to convert to a situation in which we are relying only on the physical security
of the Grapevine servers and of the participating end users’ workstations.

REFERENCES

1. BAUER, K. R., BERSON, T. A., AND FEIERTAG, R. J. A key distribution protocol using event
markers. Tech. Rep. TR-81060, Sytek Inc., Sunnyvale, Calif., 1981.

2. BIRRELL, A. D., LEVIN, R., NEEDHAM, R. M., AND SCHROEDER, M.D. Grapevine: An exercise
in distributed computing. Commun. ACM 25, 4 (Apr. 1982), 260-274.

3. BIRRELL, A. D., AND NELSON, B. J. Implementing remote procedure calls. ACM Trans. Corn@.
Syst. 2, 1 (Feb. 1984), 39-59.

4. DENNING, D. E., AND SACCO, G. M. Timestamps in key distribution protocols. Commun. ACM
24,8 (Aug. 1981), 533-536.

5. EHRSAM, W. F., MATYAS, S. M., MEYER, C. H., AND TUCHMAN, W. L. A cryptographic key
management scheme for implementing the data encryption standard. IBM Syst. J. 17, 2 (1978),
106-125.

6. KLINE, C. S., AND POPEK, G. J. Public key vs. conventional key encryption. In AFZPS
Conference Proceedings 48 AFIPS Press, Arlington, Va., 1979, pp. 831-837.

7. MATYAS, S. M., AND MEYER, C. H. Generation, distribution, and installation of cryptographic
keys. IBM Syst. J. 17, 2 (1978), 126-137.

8. NBS. Data Encryption Standard. FIPS publication 46, National Bureau of Standards, U.S.
Department of Commerce, Washington, D.C., 1977.

9. NBS. DES Modes of Operation. FIPS publication 81, National Bureau of Standards, U.S.
Department of Commerce, Washington, D.C., 1980.

10. NEEDHAM, R. M., AND SCHROEDER, M. D. Using encryption for authentication in large
networks of computers. Commun. ACM 21, 12 (Dec. 1978), 993-999.

11. VOYDOCK, V. L., AND KENT, S. T. Security in higher-level protocols: Approaches, alternatives
and recommendations. Tech. Rep. 4767, Bolt Beranek and Newman, Inc., (Oct. 1981). Also
available as Tech. Rep. ICST/HLNP-81-19. National Bureau of Standards, Washington, D.C.,
Oct. 1981.

12. VOYDOCK, V. L., AND KENT, S. T. Security mechanisms in high-level network protocols. ACM
Comput. Suru. 15, 2 Jun., 1983, 135-171.

Received February 1984; revised September 1984; accepted October 1984

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985.

