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1. INTRODUCTION 

Many computing environments now exist in which frequent and substantial parts 
of the activities involve communication among computers linked by open net- 
works. A user may well spend most of his time at a personal computer and use 
networks for transferring data to and from other personal computers or shared- 
server computers such as printers, file servers, and mail servers. Most of the 
networks (and internetworks) used for these activities are open in the sense that 
they are readily vulnerable to eavesdropping and interference from unauthorized 
intruders. Such an architecture presents security problems much different from 
the ones traditionally faced in monolithic time-sharing systems. In particular, it 
is clear that security must be based on the use of encryption in the communication 
protocols. Fundamentally, encryption permits the establishment of a data chan- 
nel that is less open than the underlying internetwork, by arranging that only 
authorized parties can create, inspect, and/or modify some or all of the data. 
Establishing, using, and maintaining such a secure data channel requires the 
resolution of multiple problems. First, it is necessary to identify the authorized 
parties (traditionally called principals). Second, it is necessary to convince each 
principal that the others are indeed who they claim to be. (This step is tradition- 
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ally termed authentication.) Third, it is necessary to transfer the actual data in 
a manner that is not vulnerable to various known threats. The second and third 
of these are inevitably interdependent, since a recipient may require convincing 
that each particular datum did indeed come from the asserted sender. 

There are several discussions in the public literature about designing commu- 
nication protocols to achieve various forms and levels of security. Much of the 
published material is concerned with particular aspects of the overall problem, 
such as the design and improvement of authentication protocols [ 1,4, lo]. There 
is less material available describing how to construct a complete secure commu- 
nication protocol. A recent report by Voydock and Kent [ll] gives a thorough 
description of one such design, including substantial description of the supporting 
arguments for their design. There are disappointingly few real implementations 
of secure protocols. The purpose of this paper is to describe the construction of 
such a protocol. 

It is possible to include secure communication at various levels in a commu- 
nication protocol hierarchy. At the physical layer, security can be achieved by 
various noncryptographic techniques that prevent tampering with the commu- 
nication medium itself. At the data link layer, it is possible to encrypt all traffic 
on each link using a code whose key is shared among all nodes directly connected 
to that link. This is termed link encryption; it protects against intruders from 
outside the community that shares that data link, but does not distinguish 
principals within that community. When a communication path is formed from 
a network consisting of multiple data links, link encryption allows intrusion by 
members of the trusted community of every data link traversed by the path. The 
lowest layer at which we can provide an end-to-end guarantee is the network 
layer, where we introduce direct node-to-node addressing of packets. But in most 
communication architectures (including ours) it is :iot until the transport layer 
that end-to-end security is feasible. The transport layer is the lowest level at 
which enough state information is kept to establish the authenticity of incoming 
data in successive packets of an interaction. It is the transport layer where we 
are first concerned with the relationship between successive packets. Here we 
introduce code that handles packet sequencing, detects missing or repeated 
packets, and retransmits to recover from lost or malformed packets. These 
mechanisms are similar to those needed to implement a secure protocol, and so 
we have chosen to introduce secure communication as an aspect of the transport 
layer protocol. 

One could also introduce security facilities at higher levels. However, doing so 
would reproduce many of the checking mechanisms already present in the 
transport layer. These mechanisms have always been difficult to design and 
implement and often significantly reduce efficiency. Implementing them twice 
seems undesirable. It would also reduce the utility of the secure protocol, since 
the easiest way to communicate would likely be by using the transport layer 
directly. This is particularly true of remote procedure calls, where a major purpose 
is to simplify the task of communicating by providing a single simple and widely 
shared mechanism: procedure calls. If security were something that required 
extra programming beyond the procedure invocation itself, then it would intrude 
on the aim of easy communication. 
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Large parts of our security design are derived from previous work. A moderate 
understanding of previous work is needed for proper appreciation of the remain- 
der of this paper; the report by Voydock and Kent [ll, 121 is a good introduction. 
As discussed in Section 3, we use the federal Data Encryption Standard (DES) 
for our encryption [B]. This choice is dictated largely by the availability of very 
fast (and cheap) hardware for DES. Hence, our schemes are based on the use of 
priuate keys (instead of public keys [S]). For our purposes it would be impractic- 
able to have each pair of principals that want to communicate share a private 
key, so our scheme is based on the use of an authentication service (also known 
as a key distribution center). Thus each principal has a single private key known 
only to the principal and the authentication service. When two principals wish 
to communicate, they negotiate with the authentication service to obtain a shared 
conversation key. This conversation key is used to encrypt subsequent commu- 
nication between the two principals. 

The design presented here arose as part of a project to implement remote 
procedure calls (RPC) on the Xerox research internetwork. The overall design 
of this RPC package has been reported in [3]. Prior to the construction of this 
RPC package, there were no encryption-based protocols in the internetwork. 
Previous protocols transmitted passwords as clear text whenever any authenti- 
cation was desired. Part of the design of this RPC package included a new 
transport layer protocol, and this seemed like an ideal opportunity to include 
security features at the correct level in the protocol hierarchy. An additional 
factor that enabled a secure protocol to be introduced was that most software 
using the research internetwork had recently converted to using Grapevine [2] 
as the primary authority for naming and authenticating individuals and services. 
This allowed us to envisage using Grapevine as the mediator in the negotiation 
to establish the authenticity of the principals involved in secure communication. 

2. THE SECURITY ABSTRACTION OFFERED TO CLIENTS 

Clients of our RPC package interface to its security facilities by dealing in 
conuersutions. A conversation represents a communicating pair of security prin- 
cipals; during secure communication, one of these principals is an implementor 
of a remote procedure, and the other is a caller on that procedure. A client can 
create a conversation by presenting the RPC run-time system with his name and 
private key and the name of the other principal. Subsequently, if that conversa- 
tion is an argument of a remote procedure call, the RPC run-time system ensures 
that the call is performed securely using a conversation key known only to those 
two principals. We guarantee to the caller and callee that they are the two 
principals nominated when the conversation was created. (More precisely, we 
guarantee that the caller and callee are each trusted by one of those principals, 
to the extent of having been told the conversation key by one of them.) When a 
server is invoked for an incoming call with a conversation as argument, the server 
may ask the RPC run-time system for the name of the other principal in the 
conversation. Thus, our clients never deal explicitly with encryption, but they 
get the appropriate guarantees. Creating a conversation involves an interaction 
between the principal who wishes to create it and the authentication service (as 
described in Section 4). Using a conversation to make a remote call (described 
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in Section 5) involves only the two principals-the authentication service is not 
concerned with this. 

For example, if principal A wishes to communicate securely with principal B, 
then A’s program would include a call on the RPC run-time system of the form: 

conv t R.P.C. Create Conv [from: nameOfA, to: nameOfl3, key: privateKeyOfA] 

Principal A could then make remote calls to a procedure P.Q implemented by B 
such as: 

x t P.Q[thisConv: conv, arg: y] 

Inside the implementation of P.Q, principal B could find the identity of his caller 
by a call on the RPC run-time system of the form: 

caller t RPC.GetCaller[thisConv] 

This concept of conversations is orthogonal to the other abstractions involved 
in a call. Multiple processes can participate in a single conversation; there may 
be multiple simultaneous calls in a conversation; calls can be made through 
multiple remote interfaces but still be part of the same conversation. Calls may 
be made in either direction in a conversation, independent of which principal is 
the caller and which is the callee. Indeed, it would be consistent for many 
machines (with the same two principals) to participate in a single conversation, 
although we have not implemented this. 

Note that we restrict a secure conversation to a pair of principals. We do not 
directly support multiparty conversations, although they may be emulated by 
pairwise two-party conversations. Nor do we support third party operations. For 
example, if a user A calls a server B to perform some operation, the server B 
cannot communicate securely with a third principal C (on a third machine) to 
perform some action on behalf of A merely by providing the authentication 
information that B obtained from A. To support such interaction, it would be 
necessary for A to establish a conversation between himself and C, then give B 
enough information (particularly, the authenticator and conversation key) to 
allow B to participate in the conversation. Such interactions can be made securely 
and are not ruled out by our package, but we provide little aid for them. 

When building a secure system of any sort, it is important to be clear about 
the threats that are being countered. We guarantee to the caller that his call will 
be performed only by a callee whose name the caller has nominated. We will tell 
the callee the true name of the caller. Calls cannot be observed in transit, to the 
extent that an intruder cannot determine which procedure is being called, nor 
any information about the arguments or results (except their length). An intruder 
cannot make undetected modifications to calls and results while they are in 
transit. An intruder cannot cause the invocation (or replay) of a call. We do not 
attempt any protection against traffic analysis or against denial of service 
(although clearly a caller will notice if his remote call does not complete because 
of a denial of service attack). It is also important to be aware that these guarantees 
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are not absolute. The best that can be offered is that we make it prohibitively 
expensive for an intruder to violate these guarantees. The aim is to make that 
expense greater than the value to the intruder. The communicating principals 
should trust these security guarantees only to the extent that they trust the 
authentication service, the encryption algorithm, and each other. 

3. ENCRYPTION ALGORITHMS 

As mentioned in Section 1, we use the federal Data Encryption Standard (DES) 
for our encryption. We made this choice primarily because DES has been 
implemented in cheap, fast hardware. (The fastest chips run at about 14 megabits 
per second.) There has been some controversy over the cryptographic strengths 
and weaknesses of DES, but these are not important to our design. The design 
would be unaffected by a choice of any other private-key encryption algorithm. 
Our detailed packet formats allow for multiple encryption algorithms and for key 
lengths up to 128 bits. Use of a public-key system [6] would have a large impact 
on the authentication protocol. 

Basically, DES maps 64-bit blocks of plain text into 64-bit blocks of cipher 
text. That basic mapping hides the data but does not hide patterns (such as 
repeated blocks of zeros) and does not detect modifications. The cipher block 
chaining, or CBC, mode of DES [9] hides the patterns but still does not guarantee 
that modifications will be detected. We use the CBC mode with the addition of 
a 64-bit checksum encrypted at the end of the packet. This checksum is formed 
by accumulating the 64-bit exclusive-or of the plain text blocks (this is performed 
by hardware in parallel with the encryption). This technique reduces the proba- 
bility of most undetected modifications to 2-64. This assertion is based on the 
observation that from the point of view of an intruder who does not know the 
conversation key, modifying a block of cipher text produces an unpredictable 
modification to two blocks of plain text when the cipher text is decrypted. It is 
fairly simple to show that a random modification to 64-bits of plain-text has 
probability 1 - 2-‘j4 of changing the resulting checksum. An alternative modifi- 
cation to CBC mode, which we rejected because the requisite extra hardware 
would be more complicated, has been proposed by Ehrsam et al. [5]. Remember 
that an intruder has an a priori probability of 2-56 of guessing the conversation 
key at his first attempt. 

Unfortunately, Voydock and Kent have recently pointed out that both of these 
schemes for detecting modifications to cipher text are inadequate [12]. If an 
intruder swaps two adjacent cipher text blocks, the change might not be detected. 
We have not yet modified our protocols to repair this defect. 

We assume that users choose (or are issued) sufficiently random private keys 
[7]. Temporary keys, CBC initialization vectors, and conversation keys should 
be generated by the authentication servers using a hardware random number 
generator. 

In the descriptions in the following sections, we have omitted some details. 
These details are quite systematic, being the modifications needed for secure 
distribution of CBC initialization vectors, for avoidance of transmissions of 
cipher text for known plain text, and for minimizing the amount of data encrypted 
with long term keys. All these details are given in full in Section 8. 

We use the notation {P) K to indicate the cipher text formed by encrypting 
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plain text P using encryption key K. In each context, if P is an encryption key, 
we intend straightforward single-block use of DES, and otherwise we intend 
encryption using the CBC mode with the checksum described above. 

4. AUTHENTICATION 

There is substantial literature on protocols for implementing this negotiation [ 1, 
4, lo]. The protocol we use is based primarily on Needham and Schroeder’s [lo], 
modified slightly to improve some shortcomings and rearranged to meet our 
efficiency goals. 

This protocol relies on the presence of a trusted authentication service. We 
use the Grapevine distributed system [Z] as our authentication service. Grapevine 
provides a distributed replicated database indexed by strings known as RNames. 
Several values may be associated with an RName. One such value is used as the 
private key for security principals. 

Our authentication scheme creates an authenticator. An authenticator is en- 
crypted data that one principal can use to assure the other of his identity. When 
principal A passes an authenticator to B, the assurance is based on B’s observa- 
tion that someone who knew B’s private key (namely, the authentication service) 
promises that the imbedded conversation key was given only to principal A. B 
may as well believe the assurance, because the only alternative is that B’s private 
key has been compromised. The authenticator takes the form 

ICK T, AIKE, 

where CK is a conversation key, A is A’s name, T is the time at which the 
authenticator was created, and KB is B’s private key. T is used to limit the 
damage potentially caused by a compromised private key, by limiting the lifetime 
of an authenticator to a few hours. 

To obtain an authenticator, A calls the procedure RPC.CreateConv provided 
by the RPC run-time system on A’s host, giving it A’s name, B’s name, and A’s 
private key. The RPC run-time system calls the authentication service remotely 
(without additional encryption) giving it 

[A B, Xl, 
where A and B are the principal names and X is a nonrepeating 64-bit number. 
(Alternatively, X may be chosen pseudorandomly or randomly.) The authenti- 
cation service returns 

(authenticator, X, B, CK)“A, 

where KA is A’s private key and CK is the conversation key, also imbedded in 
the authenticator. 

The RPC run-time system on A’s host may now obtain the conversation key 
and authenticator and is assured that it and CK were issued by the authentication 
service for communication between A and B. Additionally, the RPC run-time 
system generates a permanently unique identifier for the conversation. Later, 
when A asks the RPC run-time system to make a remote call using this 
conversation, it has available the authenticator, the conversation key, and the 
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unique identifier. In Section 5, the first part of Figure 2 shows the operation of 
creating a conversation. 

The permanently unique identifier of a conversation is created by concaten- 
ating the unique identifier of this processor with a sequence number. When the 
run-time system is first started, this sequence number is initialized from a one- 
second real-time clock, and the values used for unique identifiers never exceed 
the current value of that clock. This restricts the rate of generation of new 
conversations on a single processor to a long-term average of one per second, 
although the burst rate may occasionally exceed one per second. 

Note that in order to return the authenticator, the authentication service uses 
the private keys of both principals. Since the Grapevine database is distributed, 
both of these keys might not be known by any single Grapevine host. So to 
respond to the request a Grapevine host may need to communicate in a secure 
fashion with another Grapevine host. The Grapevine servers are capable of 
communicating securely among themselves, since they are themselves security 
principals registered in a part of the database that is replicated on every Grapevine 
host. 

It is important to remember that the entire security of this scheme depends on 
the security of the authentication service’s database. Ultimately, this must depend 
on the physical protection of the hosts maintaining this database. 

5. MAKING SECURE CALLS 

The structure employed for our RPC package (as we have described in [3]) is as 
follows. A caller initiates a remote call by making a local call to a specially 
constructed user stub module. This stub takes the arguments of the call and an 
identification of the desired procedure and places them in one or more packets 
that it passes to the RPC run-time system. The run-time system is responsible 
for transmitting the packets reliably to the remote host and waiting for a response. 
In the remote host, the packets are received and are passed to the appropriate 
sewer stub module (also specially constructed). The server stub unpacks the 
arguments and makes an ordinary local call to the appropriate procedure. When 
this local call returns, the server stub takes the results and places them in one 
or more packets, and the RPC run-time system communicates them to the caller 
machine, where they are given to the user stub. The user stub then takes the 
results and returns from the original local call. This structure is depicted in 
Figure 1, and is described in much more detail in [3]. This earlier paper also 
describes our binding mechanism, whereby a caller determines which host imple- 
ments a desired remote procedure. 

The stub modules are generated mechanically by a program known as Lupine. 
This program gives special treatment to procedures that have an argument whose 
data type is that used for conversations. In the user stub generated for such a 
procedure, the code for transmitting the call packets passes the conversation in 
to the RPC run-time system when asking for the packets to be transmitted. Thus 
the RPC run-time system knows to encrypt the packets and has access to the 
appropriate information to do so. Similarly, the RPC run-time system tells the 
server stub for such a call which conversation is being used, so it is passed as an 
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Caller machine Network Callee machine 

User Userdub RPCRuntime RPCRuntime Server-stub Server 

importer 
I 

exporter 

transmit 
Call packet 

\L 
wait 

\L Result packet 
receive 

importer exporter 

interface 
I I 

Fig. 1. The components of the system and their interactions for a simple, nonsecure call. 

argument to the server implementation of the procedure and can be used to 
obtain the name of the principal who is the caller. 

When making a secure call, the RPC run-time system must take extra steps 
to encrypt the call; this is easy, since the conversation passed as argument is, in 
fact, a pointer into the RPC run-time system’s data structure, giving it the 
conversation key and conversation identifier. When receiving such a call, the 
RPC run-time system must ensure that it has (or obtains) the information about 
that particular conversation. To describe how this is achieved, we will describe 
first the steady state, and then we will describe how we reach that state. 

To support secure calls, the RPC run-time system on each machine maintains 
a hash table mapping the unique identifier of a conversation into a data object 
giving the principal’s names and the conversation key. Remember that this 
identifier is unique over all hosts and all time. To allow secure calls, we have 
added a field to our packet headers to contain (as plain text) the conversation 
identifier. Other plain text fields are the internetwork source and destination 
host identifiers and an identifier of the calling process. The remainder of each 
packet is encrypted using CBC with the checksum described in Section 3. The 
encrypted part of the packet contains additional protocol information, particu- 
larly the sequence number of this call (relative to the calling host and process), 
the identifier of the calling process, and the sequence number of this packet 
relative to this call. We use the term call identifier for the set of fields 

[calling-host, calling process, call-sequence-number]. 

On receipt of a packet participating in a secure call, the conversation identifier 
is looked up in this hash table to find the conversation key, and the remainder 
of the packet is decrypted. The decrypted packet is checked to ensure that the 
CBC checksum is valid. Failure of this check indicates that the packet is not 
genuine. We do not distinguish between errors caused by an intruder and 
transmission, although this could be done quite easily by adding another check- 
sum layer around the entire packet. (In practice, transmission errors are quite 
rare at this level in our communication environment, so the occurrence of 
frequent errors would be cause for investigation.) The RPC run-time system can 
then consider the remainder of the packet to determine whether the packet starts 
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Fig. 2. Communication for secure calls. The first part of the figure shows the creation of a 
conversation and its corresponding authenticator (a&h) and conversation identifier (ConuZD). The 
last part shows a normal secure call. The middle part shows the interactions when the RFA protocol 
is needed for the callee to establish or re-establish his connection state. 

a new call, is part of an ongoing call, or is a duplicate of some old call. This 
determination is just as it would be for nonsecure calls and uses the same data 
structures. Note that we are using the mechanisms for eliminating duplicates 
that may happen in any transport protocol to simultaneously eliminate replays 
maliciously injected by an intruder. (This is discussed further in Section 6.) A 
typical secure call is shown at the end of Figure 2. 

We have assumed the existence in the server of a mapping from conversation 
identifier to caller and conversation key. Further, the table used by the server to 
eliminate duplicate calls (which gives the sequence number of the last call from 
each process on each host) is part of the security arrangements, since it is this 
that prevents an intruder replaying an old call. Clearly, these mappings must be 
established initially in a secure way, by some form of connection establishment 
protocol. In our package, this is achieved by a technique that also permits the 
server to discard this information when the connection is idle. This is achieved 
by a form of call-back, known as a request for authenticator, or RFA. When a 
server receives a call packet whose conversation identifier is unknown to the 
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server (and which, therefore, the server is unable to decrypt), the server sends 
an RFA packet back to the calling machine. The RFA packet contains 

[conversation-identifier, (call-identifier]CK, Y], 

where Y is a 64-bit number chosen by B such that this value of Y is not 
predictable by an intruder. For example, B could generate Y by using DES as a 
random number generator with a seed known only to B. Since the server does 
not yet know the conversation key, it cannot perform any encryptions or 
decryptions yet, but {call-identifier) CK is available to the server from the initial 
part of the (still encrypted) packet. (This encryption is defined to use purely 
CBC, with no checksum.) On receiving the RFA, the caller (who is A) returns a 
packet containing 

[B, (call-identifier, YjcK, authenticator]. 

This allows the server B, to obtain the conversation key and A’s name from the 
authenticator. The call identifier in the response assures the server of the current 
call sequence number for the calling process contained in the call-identifier. The 
server decrypts the original call packet and verifies that its call identifier matches 
that in the RFA response. The number Y bound in with the call identifier in the 
RFA response assures the server that the RFA response is not a retransmission 
and hence that the call is not being replayed by an intruder. The inclusion of B’s 
name in this response is purely to enable the RPC run-time system to decrypt 
the authenticator without consulting higher-level software; an incorrect name 
here would cause the packet decryption to fail. The use of this RFA protocol for 
the first call of a conversation is shown in the middle of Figure 2. 

The server now has the information it needs for accepting steady-state calls. 
This has cost two extra packets, which is minimal for any form of connection 
establishment. The server may discard this information after a suitable period 
with no calls from A, since the information can be obtained by the server 
whenever it wishes. Thus we do not require a connection termination protocol. 

Additionally, the server should limit the lifetime of the conversation by using 
the time given in the authenticator to reduce the damage caused by a compromised 
private key or conversation key. 

6. PREVENTION OF REPLAYED CALLS 

The most complicated of the threats we are preventing is that we do not let an 
intruder cause the server to invoke a call more than once. Basically, this is 
achieved by the mechanism that eliminates duplicate calls on the basis of the 
securely transmitted call identifier. This mechanism is initialized securely (and 
restored securely if the server discards it) by the RFA mechanism. However, 
there are several subtleties in this. 

Note that we specified the permanent uniqueness of the conversation identifier. 
If somehow an intruder caused a principal to reuse a conversation identifier from 
some previous conversation, the only possible adverse effect with probability 
more than 2-56 is denial of service. This would happen if the server’s table still 
contained an entry for that conversation identifier: in that case, the server would 
incorrectly believe that it knew the conversation key, and so the checksum would 
ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985. 
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look wrong when the caller’s packets were decrypted. A replayed call would be 
accepted only if the conversation identifier was reused with the same conversation 
key. Since conversation keys are allocated securely and randomly on the caller’s 
behalf by the authentication service, the replay is accepted with probability 2-56. 

A similar argument applies to the identifier of the calling machine. We used 
this when looking up the conversation identifier in the server’s table, and we did 
so by believing information transmitted unencrypted in the packet header. The 
only effect of the intruder modifying the packet header would be that we would 
decrypt the packet with the wrong conversation key (except for a 2-56 probability), 
and this would be detected by our checksum arrangements. Because of this, we 
can optimize by not including the caller’s machine identifier in the secure part 
of the packet at all. 

We also are relying on the uniqueness of the call identifiers. Each call identifier 
has three parts: a machine-relative monotonic sequence number, a machine- 
relative process identifier, and a global machine identifier. The sequence number 
does not need to be permanently unique, since, for a call to be considered at all, 
its permanently unique conversation identifier must be approved by the caller 
responding to the RFA. However, within a conversation, the sequence number 
must be nonrepeating: since we use a 32-bit field this limits us to 232 calls per 
conversation. Other security considerations restrict the reasonable lifetime of a 
conversation to less than this. The caller can straightforwardly ensure the 
machine-relative (nonpermanent) uniqueness of the process identifier. The ma- 
chine identifier is not transmitted with the call identifier, since it may be picked 
up from the packet header and verified while looking up the conversation 
identifier. Again, the possibility of an intruder causing a caller to use a duplicate 
machine identifier is not a problem (beyond the 2-“j probability of identical 
keys), since it would cause the server to decrypt the packet using the wrong 
conversation key. 

The period for which a server maintains the connection-state information 
must be guaranteed to be longer than the maximum length of time for which A 
is willing to continue retransmitting a call packet. Otherwise, an intruder could 
wait until a call has been invoked, suppress all further packets between B and A, 
wait until B has discarded the state information, and then allow a retransmission 
and subsequent packets (including the RFA) to get through. This would have the 
effect of causing the call to be invoked twice. This remarkably unlikely event is 
depicted in Figure 3. It is prevented by the server keeping its state information 
for a long enough period. Note that this only requires clocks that run at 
approximately the same rate, not synchronized clocks. 

7. COSTS OF SECURITY 

When embarking on this project, we had naively believed that the major cost of 
including security facilities would be the encryption itself. In practice, this is far 
from true. The hardware we plan to use for DES performs encryption at up to 
14 megabits per second (faster than any of our communication networks), but 
making our protocols secure has added significant complexity and cost to them. 
The discussion of the prevention of replayed calls showed how the amount of 
information needed to identify a packet is increased by the security requirements. 
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Fig. 3. A security loophole if a server discards its connection state too early. Merely by suppress- 
ing appropriate packets, the intruder could cause a call to be invoked twice. This is described in 
Section 6. 

In nonsecure protocols, much smaller identifiers are adequate because we are 
confident that we will not encounter day-old packets. In the secure protocol the 
possibility of an active intruder causes us to make our packets permanently 
uniquely identified. In total we use 14 bytes to identify a call: 2 bytes for the 
machine identifier, 4 bytes for the conversation identifier, 4 bytes for the call 
sequence number, 2 bytes for the process identifier in the clear text, plus another 
2 in the cipher text. This adds significantly to the minimum packet transmission 
time and to the time required to construct or interpret the packet. We could 
perform adequate duplicate elimination for nonsecure calls by using a 2-byte 
machine identifier, 2-byte call sequence number, and 2-byte process identifier. 
The size could be reduced significantly by more subtle encodings, but only at the 
cost of processing time in interpreting and verifying it. We also must maintain 
and look up the table in the server giving information about each conversation. 
The packet exchange of the RFA mechanism is required solely for secure calls. 

We are not unhappy about these costs, though. The cost of security is not very 
high, and we are happy to pay it in order to get away from our previous completely 
unprotected state. Of course, there is no need for all clients to pay the cost of 
security. Those making nonsecure calls can happily use the simpler protocol we 
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described in [3]. We also offer an intermediate style that uses secure authenti- 
cation but does not encrypt the calls themselves. 

8. ADDITIONAL DETAILS OF THE SECURITY PROTOCOL 

Cryptologists are aware that a cipher is often more easily broken if the cipher 
text for known plain text is available or if large amounts of cipher text are 
available encrypted with a single key. With DES it is not clear how important 
these threats are, but since the preventative measures are quite simple, we have 
included them in our security protocols. Similarly, the initialization vector used 
by the CBC mode of DES must be randomly chosen and securely distributed if 
the first plain text block is known or has only a small amount of unknown 
information. Some encryption hardware encourages a style of usage where the 
principal’s private key is loaded into the unit only once (possibly manually) and 
encryption is always by working keys, which are presented to the unit encrypted 
with the private key; the working keys and the private key need never occur 
outside the encryption hardware as plain text. In the following, KX and KY are 
temporary keys and J is an initialization vector, randomly chosen by the authen- 
tication service. 

The authenticator is in fact 

{KX]‘@{ {CK)KB, T, A)KX. 

This CBC encryption uses a zero initialization vector; it is important that { CK 1 KB 
is the first plain text block, since this value is unknown to an intruder. When 
the authentication service is sending the authenticator back to A, it actually 
sends 

(KYjKA{ J, authenticator, X, B, CKjKY. 

This CBC encryption uses a zero initialization vector; it is important that J is 
the first plain text block, since this value is unknown to an intruder. The packet 
returned in response to an RFA packet actually contains 

[B, (J, call-identifier, Y)CK, authenticator). 

Again, the CBC encryption uses a zero initialization vector. When packets in 
calls are encrypted in this conversation, J is used as the initialization vector. 
Remember that all encryptions other than encrypted keys use CBC mode with 
an additional checksum to detect modifications. 

9. STATUS AND CONCLUSIONS 

Our remote procedure call package is fully implemented and is in daily use by a 
number of applications. The protocol for accessing the Alpine file servers (which 
provide a file system featuring distributed atomic transactions) uses our security 
features, as does the control protocol for an ethernet-based voice project. Both 
of these applications have found the security mechanisms entirely painless to 
use. 

Unfortunately the present implementation is not yet complete. First, most of 
our computers are not yet equipped with DES hardware, so at present we are 

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985. 



14 l Andrew D. Birrell 

using a trivial exclusive-or scheme in place of a genuine encryption. Second, we 
have not yet retrofitted the Grapevine servers to support the secure authentica- 
tion protocol. We are confident that neither of these changes would seriously 
disturb our implementation, but they do make it impossible for us to measure 
the performance impact of encryption. 

We are happy with our decision to include secure communication in this 
package. It has enabled us to explore in detail the implications of our previous 
theoretical designs for secure communication. It has shown that secure commu- 
nication can be successfully included in our protocol family, and that security 
can be presented to programmers as a communication facility that is easy and 
convenient to use. Once we have suitable hardware in place, we will rapidly be 
able to convert to a situation in which we are relying only on the physical security 
of the Grapevine servers and of the participating end users’ workstations. 

REFERENCES 

1. BAUER, K. R., BERSON, T. A., AND FEIERTAG, R. J. A key distribution protocol using event 
markers. Tech. Rep. TR-81060, Sytek Inc., Sunnyvale, Calif., 1981. 

2. BIRRELL, A. D., LEVIN, R., NEEDHAM, R. M., AND SCHROEDER, M.D. Grapevine: An exercise 
in distributed computing. Commun. ACM 25, 4 (Apr. 1982), 260-274. 

3. BIRRELL, A. D., AND NELSON, B. J. Implementing remote procedure calls. ACM Trans. Corn@. 
Syst. 2, 1 (Feb. 1984), 39-59. 

4. DENNING, D. E., AND SACCO, G. M. Timestamps in key distribution protocols. Commun. ACM 
24,8 (Aug. 1981), 533-536. 

5. EHRSAM, W. F., MATYAS, S. M., MEYER, C. H., AND TUCHMAN, W. L. A cryptographic key 
management scheme for implementing the data encryption standard. IBM Syst. J. 17, 2 (1978), 
106-125. 

6. KLINE, C. S., AND POPEK, G. J. Public key vs. conventional key encryption. In AFZPS 
Conference Proceedings 48 AFIPS Press, Arlington, Va., 1979, pp. 831-837. 

7. MATYAS, S. M., AND MEYER, C. H. Generation, distribution, and installation of cryptographic 
keys. IBM Syst. J. 17, 2 (1978), 126-137. 

8. NBS. Data Encryption Standard. FIPS publication 46, National Bureau of Standards, U.S. 
Department of Commerce, Washington, D.C., 1977. 

9. NBS. DES Modes of Operation. FIPS publication 81, National Bureau of Standards, U.S. 
Department of Commerce, Washington, D.C., 1980. 

10. NEEDHAM, R. M., AND SCHROEDER, M. D. Using encryption for authentication in large 
networks of computers. Commun. ACM 21, 12 (Dec. 1978), 993-999. 

11. VOYDOCK, V. L., AND KENT, S. T. Security in higher-level protocols: Approaches, alternatives 
and recommendations. Tech. Rep. 4767, Bolt Beranek and Newman, Inc., (Oct. 1981). Also 
available as Tech. Rep. ICST/HLNP-81-19. National Bureau of Standards, Washington, D.C., 
Oct. 1981. 

12. VOYDOCK, V. L., AND KENT, S. T. Security mechanisms in high-level network protocols. ACM 
Comput. Suru. 15, 2 Jun., 1983, 135-171. 

Received February 1984; revised September 1984; accepted October 1984 

ACM Transactions on Computer Systems, Vol. 3, No. 1, February 1985. 


