

An Introduction to Programming with C# Threads

Andrew D. Birrell

This paper provides an introduction to writing concurrent programs with “threads”. A
threads facility allows you to write programs with multiple simultaneous points of
execution, synchronizing through shared memory. The paper describes the basic thread
and synchronization primitives, then for each primitive provides a tutorial on how to use
it. The tutorial sections provide advice on the best ways to use the primitives, give
warnings about what can go wrong and offer hints about how to avoid these pitfalls. The
paper is aimed at experienced programmers who want to acquire practical expertise in
writing concurrent programs. The programming language used is C#, but most of the
tutorial applies equally well to other languages with thread support, such as Java.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent
Programming; D.3.3 [Programming Languages]: Language Constructs and Features—
Concurrent programming structures; D.4.1 [Operating Systems]: Process Management

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Threads, Concurrency, Multi-processing,
Synchronization

CONTENTS

1. Introduction .. 1
2. Why use concurrency? .. 2
3. The design of a thread facility .. 3
4. Using Locks: accessing shared data... 8
5. Using Wait and Pulse: scheduling shared resources... 16
6. Using Threads: working in parallel ... 25
7. Using Interrupt: diverting the flow of control ... 31
8. Additional techniques ... 33
9. Advanced C# Features... 36
10. Building your program ... 36
11. Concluding remarks .. 38

© Microsoft Corporation 2003.

Permission to copy in whole or part without payment of fee is granted for non-
profit educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of
Microsoft Corporation; an acknowledgement of the author of the work; and this
copyright notice. Parts of this work are based on research report #35 published in
1989 by the Systems Research Center of Digital Equipment Corporation and
copyright by them. That material is used here by kind permission of Hewlett-
Packard Company. All rights reserved.

 An Introduction to Programming with C# Threads . 1

1. INTRODUCTION

Almost every modern operating system or programming environment provides
support for concurrent programming. The most popular mechanism for this is
some provision for allowing multiple lightweight “threads” within a single
address space, used from within a single program.

Programming with threads introduces new difficulties even for experienced
programmers. Concurrent programming has techniques and pitfalls that do not
occur in sequential programming. Many of the techniques are obvious, but some
are obvious only with hindsight. Some of the pitfalls are comfortable (for
example, deadlock is a pleasant sort of bug—your program stops with all the
evidence intact), but some take the form of insidious performance penalties.

The purpose of this paper is to give you an introduction to the programming
techniques that work well with threads, and to warn you about techniques or
interactions that work out badly. It should provide the experienced sequential
programmer with enough hints to be able to build a substantial multi-threaded
program that works—correctly, efficiently, and with a minimum of surprises.

This paper is a revision of one that I originally published in 1989 [2]. Over
the years that paper has been used extensively in teaching students how to
program with threads. But a lot has changed in 14 years, both in language design
and in computer hardware design. I hope this revision, while presenting
essentially the same ideas as the earlier paper, will make them more accessible
and more useful to a contemporary audience.

A “thread” is a straightforward concept: a single sequential flow of control.
In a high-level language you normally program a thread using procedure calls or
method calls, where the calls follow the traditional stack discipline. Within a
single thread, there is at any instant a single point of execution. The programmer
need learn nothing new to use a single thread.

Having “multiple threads” in a program means that at any instant the
program has multiple points of execution, one in each of its threads. The
programmer can mostly view the threads as executing simultaneously, as if the
computer were endowed with as many processors as there are threads. The
programmer is required to decide when and where to create multiple threads, or
to accept such decisions made for him by implementers of existing library
packages or runtime systems. Additionally, the programmer must occasionally
be aware that the computer might not in fact execute all his threads
simultaneously.

Having the threads execute within a “single address space” means that the
computer’s addressing hardware is configured so as to permit the threads to
read and write the same memory locations. In a traditional high-level language,
this usually corresponds to the fact that the off-stack (global) variables are shared
among all the threads of the program. In an object-oriented language such as C#
or Java, the static variables of a class are shared among all the threads, as are the
instance variables of any objects that the threads share.* Each thread executes on
a separate call stack with its own separate local variables. The programmer is

* There is a mechanism in C# (and in Java) for making static fields thread-specific and not
shared, but I’m going to ignore that feature in this paper.

2 . An Introduction to Programming with C# Threads

responsible for using the synchronization mechanisms of the thread facility to
ensure that the shared memory is accessed in a manner that will give the correct
answer.*

Thread facilities are always advertised as being “lightweight”. This means
that thread creation, existence, destruction and synchronization primitives are
cheap enough that the programmer will use them for all his concurrency needs.

Please be aware that I am presenting you with a selective, biased and
idiosyncratic collection of techniques. Selective, because an exhaustive survey
would be too exhausting to serve as an introduction—I will be discussing only
the most important thread primitives, omitting features such as per-thread
context information or access to other mechanisms such as NT kernel mutexes or
events. Biased, because I present examples, problems and solutions in the context
of one particular set of choices of how to design a threads facility—the choices
made in the C# programming language and its supporting runtime system.
Idiosyncratic, because the techniques presented here derive from my personal
experience of programming with threads over the last twenty five years (since
1978)—I have not attempted to represent colleagues who might have different
opinions about which programming techniques are “good” or “important”.
Nevertheless, I believe that an understanding of the ideas presented here will
serve as a sound basis for programming with concurrent threads.

Throughout the paper I use examples written in C# [12]. These should be
readily understandable by anyone familiar with modern object-oriented
languages, including Java [7]. Where Java differs significantly from C#, I try to
point this out. The examples are intended to illustrate points about concurrency
and synchronization—don’t try to use these actual algorithms in real programs.

Threads are not a tool for automatic parallel decomposition, where a
compiler will take a visibly sequential program and generate object code to
utilize multiple processors. That is an entirely different art, not one that I will
discuss here.

2. WHY USE CONCURRENCY?

Life would be simpler if you didn’t need to use concurrency. But there are a
variety of forces pushing towards its use. The most obvious is the use of multi-
processors. With these machines, there really are multiple simultaneous points of
execution, and threads are an attractive tool for allowing a program to take
advantage of the available hardware. The alternative, with most conventional
operating systems, is to configure your program as multiple separate processes,
running in separate address spaces. This tends to be expensive to set up, and the
costs of communicating between address spaces are often high, even in the
presence of shared segments. By using a lightweight multi-threading facility, the
programmer can utilize the processors cheaply. This seems to work well in
systems having up to about 10 processors, rather than 1000 processors.

* The CLR (Common Language Runtime) used by C# applications introduces the
additional concept of “Application Domain”, allowing multiple programs to execute in a
single hardware address space, but that doesn’t affect how your program uses threads.

 An Introduction to Programming with C# Threads . 3

A second area where threads are useful is in driving slow devices such as
disks, networks, terminals and printers. In these cases an efficient program
should be doing some other useful work while waiting for the device to produce
its next event (such as the completion of a disk transfer or the receipt of a packet
from the network). As we will see later, this can be programmed quite easily
with threads by adopting an attitude that device requests are all sequential (i.e.,
they suspend execution of the invoking thread until the request completes), and
that the program meanwhile does other work in other threads. Exactly the same
remarks apply to higher level slow requests, such as performing an RPC call to a
network server.

A third source of concurrency is human users. When your program is
performing some lengthy task for the user, the program should still be
responsive: exposed windows should repaint, scroll bars should scroll their
contents, and cancel buttons should click and implement the cancellation.
Threads are a convenient way of programming this: the lengthy task executes in
a thread that’s separate from the thread processing incoming GUI events; if
repainting a complex drawing will take a long time, it will need to be in a
separate thread too. In a section 6, I discuss some techniques for implementing
this.

A final source of concurrency appears when building a distributed system.
Here we frequently encounter shared network servers (such as a web server, a
database, or a spooling print server), where the server is willing to service
requests from multiple clients. Use of multiple threads allows the server to
handle clients’ requests in parallel, instead of artificially serializing them (or
creating one server process per client, at great expense).

Sometimes you can deliberately add concurrency to your program in order
to reduce the latency of operations (the elapsed time between calling a method
and the method returning). Often, some of the work incurred by a method call
can be deferred, since it does not affect the result of the call. For example, when
you add or remove something in a balanced tree you could happily return to the
caller before re-balancing the tree. With threads you can achieve this easily: do
the re-balancing in a separate thread. If the separate thread is scheduled at a
lower priority, then the work can be done at a time when you are less busy (for
example, when waiting for user input). Adding threads to defer work is a
powerful technique, even on a uni-processor. Even if the same total work is
done, reducing latency can improve the responsiveness of your program and the
happiness of your users.

3. THE DESIGN OF A THREAD FACILITY

We can’t discuss how to program with threads until we agree on the primitives
provided by a multi-threading facility. The various systems that support threads
offer quite similar facilities, but there is a lot of diversity in the details. In general,
there are four major mechanisms: thread creation, mutual exclusion, waiting for
events, and some arrangement for getting a thread out of an unwanted long-term
wait. To make the discussions in this paper concrete, they’re based on the C#
thread facility: the “System.Threading” namespace plus the C# “lock” statement.

4 . An Introduction to Programming with C# Threads

When you look at the “System.Threading” namespace, you will (or should)
feel daunted by the range of choices facing you: “Monitor” or “Mutex”; “Wait” or
“AutoResetEvent”; “Interrupt” or “Abort”? Fortunately, there’s a simple answer: use
the “lock” statement, the “Monitor” class, and the “Interrupt” method. Those are the
features that I’ll use for most of the rest of the paper. For now, you should ignore
the rest of “System.Threading”, though I’ll outline it for you section 9.

Throughout the paper, the examples assume that they are within the scope of
“using System; using System.Threading;”

3.1. Thread creation

In C# you create a thread by creating an object of type “Thread”, giving its
constructor a “ThreadStart” delegate*, and calling the new thread’s “Start”
method. The new thread starts executing asynchronously with an invocation of
the delegate’s method. When the method returns, the thread dies. You can also
call the “Join” method of a thread: this makes the calling thread wait until the
given thread terminates. Creating and starting a thread is often called “forking”.

For example, the following program fragment executes the method calls
“foo.A()” and “foo.B()” in parallel, and completes only when both method calls
have completed. Of course, method “A” might well access the fields of “foo”.

 Thread t = new Thread(new ThreadStart(foo.A));
 t.Start();
 foo.B();
 t.Join();

In practice, you probably won’t use “Join” very much. Most forked threads are
permanent dæmon threads, or have no results, or communicate their results by
some synchronization arrangement other than “Join”. It’s fine to fork a thread
but never have a corresponding call of “Join”.

3.2. Mutual exclusion

The simplest way that threads interact is through access to shared memory. In an
object-oriented language, this is usually expressed as access to variables which
are static fields of a class, or instance fields of a shared object. Since threads are
running in parallel, the programmer must explicitly arrange to avoid errors
arising when more than one thread is accessing the shared variables. The
simplest tool for doing this is a primitive that offers mutual exclusion (sometimes
called critical sections), specifying for a particular region of code that only one
thread can execute there at any time. In the C# design, this is achieved with the
class “Monitor” and the language’s “lock” statement:

 lock (expression) embedded-statement

* A C# “delegate” is just an object constructed from an object and one of its methods. In
Java you would instead explicitly define and instantiate a suitable class.

 An Introduction to Programming with C# Threads . 5

The argument of the “lock” statement can be any object: in C# every object
inherently implements a mutual exclusion lock. At any moment, an object is
either “locked” or “unlocked”, initially unlocked. The “lock” statement locks the
given object, then executes the contained statements, then unlocks the object. A
thread executing inside the “lock” statement is said to “hold” the given object’s
lock. If another thread attempts to lock the object when it is already locked, the
second thread blocks (enqueued on the object’s lock) until the object is unlocked.

The most common use of the “lock” statement is to protect the instance fields
of an object by locking that object whenever the program is accessing the fields.
For example, the following program fragment arranges that only one thread at a
time can be executing the pair of assignment statements in the “SetKV” method.

class KV {
 string k, v;
 public void SetKV(string nk, string nv) {
 lock (this) { this.k = nk; this.v = nv; }
 }
 …
}

However, there are other patterns for choosing which object’s lock protects
which variables. In general, you achieve mutual exclusion on a set of variables by
associating them (mentally) with a particular object. You then write your
program so that it accesses those variables only from a thread which holds that
object’s lock (i.e., from a thread executing inside a “lock” statement that locked
the object). This is the basis of the notion of monitors, first described by Tony
Hoare [9]. The C# language and its runtime make no restrictions on your choice
of which object to lock, but to retain your sanity you should choose an obvious
one. When the variables are instance fields of an object, that object is the obvious
one to use for the lock (as in the “SetKV” method, above. When the variables are
static fields of a class, a convenient object to use is the one provided by the C#
runtime to represent the type of the class. For example, in the following fragment
of the “KV” class the static field “head” is protected by the object “typeof(KV)”.
The “lock” statement inside the “AddToList” instance method provides mutual
exclusion for adding a “KV” object to the linked list whose head is “head”: only
one thread at a time can be executing the statements that use “head”. In this code
the instance field “next” is also protected by “typeof(KV)”.

 static KV head = null;
 KV next = null;

 public void AddToList() {
 lock (typeof(KV)) {
 System.Diagnostics.Debug.Assert(this.next == null);
 this.next = head; head = this;
 }
 }

6 . An Introduction to Programming with C# Threads

3.3. Waiting for a condition

You can view an object’s lock as a simple kind of resource scheduling
mechanism. The resource being scheduled is the shared memory accessed inside
the “lock” statement, and the scheduling policy is one thread at a time. But often
the programmer needs to express more complicated scheduling policies. This
requires use of a mechanism that allows a thread to block until some condition is
true. In thread systems pre-dating Java, this mechanism was generally called
“condition variables” and corresponded to a separately allocated object [4,11]. In
Java and C# there is no separate type for this mechanism. Instead every object
inherently implements one condition variable, and the “Monitor” class provides
static “Wait”, “Pulse” and “PulseAll” methods to manipulate an object’s condition
variable.

public sealed class Monitor {
 public static bool Wait(Object obj) { … }
 public static void Pulse(Object obj) { … }
 public static void PulseAll(Object obj) { … }
 ...
}

A thread that calls “Wait” must already hold the object’s lock (otherwise, the call
of “Wait” will throw an exception). The “Wait” operation atomically unlocks the
object and blocks the thread*. A thread that is blocked in this way is said to be
“waiting on the object”. The “Pulse” method does nothing unless there is at least
one thread waiting on the object, in which case it awakens at least one such
waiting thread (but possibly more than one). The “PulseAll” method is like
“Pulse”, except that it awakens all the threads currently waiting on the object.
When a thread is awoken inside “Wait” after blocking, it re-locks the object, then
returns. Note that the object’s lock might not be immediately available, in which
case the newly awoken thread will block until the lock is available.

If a thread calls “Wait” when it has acquired the object’s lock multiple times,
the “Wait” method releases (and later re-acquires) the lock that number of times.

It’s important to be aware that the newly awoken thread might not be the
next thread to acquire the lock: some other thread can intervene. This means that
the state of the variables protected by the lock could change between your call of
“Pulse” and the thread returning from “Wait”. This has consequences that I’ll
discuss in section 5.

In systems pre-dating Java, the “Wait” procedure or method took two
arguments: a lock and a condition variable; in Java and C#, these are combined
into a single argument, which is simultaneously the lock and the wait queue. In
terms of the earlier systems, this means that the “Monitor” class supports only one
condition variable per lock†.

*This atomicity guarantee avoids the problem known in the literature as the “wake-up
waiting” race [14].
†However, as we’ll see in section 5.2, it’s not very difficult to add the extra semantics
yourself, by defining your own “Condition Variable” class.

 An Introduction to Programming with C# Threads . 7

The object’s lock protects the shared data that is used for the scheduling
decision. If some thread A wants the resource, it locks the appropriate object and
examines the shared data. If the resource is available, the thread continues. If not,
it unlocks the object and blocks, by calling “Wait”. Later, when some other thread
B makes the resource available it awakens thread A by calling “Pulse” or
“PulseAll”. For example, we could add the following “GetFromList” method to the
class “KV”. This method waits until the linked list is non-empty, and then
removes the top item from the list.

 public static KV GetFromList() {
 KV res;
 lock (typeof(KV)) {
 while (head == null) Monitor.Wait(typeof(KV));
 res = head; head = res.next;
 res.next = null; // for cleanliness
 }
 return res;
 }

And the following revised code for the “AddToList” method could be used by a
thread to add an object onto “head” and wake up a thread that was waiting for it.

 public void AddToList() {
 lock (typeof(KV)) {
 /* We’re assuming this.next == null */
 this.next = head; head = this;
 Monitor.Pulse(typeof(KV));
 }
 }

3.4. Interrupting a thread

The final part of the thread facility that I’m going to discuss is a mechanism for
interrupting a particular thread, causing it to back out of a long-term wait. In the
C# runtime system this is provided by the thread’s “Interrupt” method:

public sealed class Thread {
 public void Interrupt() { … }
 …
}

If a thread “t” is blocked waiting on an object (i.e., it is blocked inside a call of
“Monitor.Wait”), and another thread calls “t.Interrupt()”, then “t” will resume
execution by re-locking the object (after waiting for the lock to become unlocked,
if necessary) and then throwing “ThreadInterruptedException”. (The same is true if
the thread has called “Thread.Sleep” or “t.Join”.) Alternatively, if “t” is not
waiting on an object (and it’s not sleeping or waiting inside “t.Join”), then the fact

8 . An Introduction to Programming with C# Threads

that “Interrupt” has been called is recorded and the thread will throw
“ThreadInterruptedException” next time it waits or sleeps.

For example, consider a thread “t” that has called KV’s “GetFromList” method,
and is blocked waiting for a KV object to become available on the linked list. It
seems attractive that if some other thread of the computation decides the
“GetFromList” call is no longer interesting (for example, the user clicked CANCEL
with his mouse), then “t” should return from “GetFromList”. If the thread
handling the CANCEL request happens to know the object on which “t” is waiting,
then it could just set a flag and call “Monitor.Pulse” on that object. However, much
more often the actual call of “Monitor.Wait” is hidden under several layers of
abstraction, completely invisible to the thread that’s handling the CANCEL
request. In this situation, the thread handling the CANCEL request can achieve its
goal by calling “t.Interrupt()”. Of course, somewhere in the call stack of “t” there
should be a handler for “ThreadInterruptedException”. Exactly what you should do
with the exception depends on your desired semantics. For example, we could
arrange that an interrupted call of “GetFromList” returns “null”:

 public static KV GetFromList() {
 KV res = null;
 try {
 lock (typeof(KV)) {
 while (head == null) Monitor.Wait(typeof(KV));
 res = head; head = head.next; res.next = null;
 }
 } catch (ThreadInterruptedException) { }
 return res;
 }

Interrupts are complicated, and their use produces complicated programs. We
will discuss them in more detail in section 7.

4. USING LOCKS: ACCESSING SHARED DATA

The basic rule for using mutual exclusion is straightforward: in a multi-threaded
program all shared mutable data must be protected by associating it with some
object’s lock, and you must access the data only from a thread that is holding that
lock (i.e., from a thread executing within a “lock” statement that locked the
object).

4.1. Unprotected data

The simplest bug related to locks occurs when you fail to protect some mutable
data and then you access it without the benefits of synchronization. For example,
consider the following code fragment. The field “table” represents a table that can
be filled with object values by calling “Insert”. The “Insert” method works by
inserting a non-null object at index “i” of “table”, then incrementing “i”. The table
is initially empty (all “null”).

 An Introduction to Programming with C# Threads . 9

class Table {
 Object[] table = new Object[1000];
 int i = 0;

 public void Insert(Object obj) {
 if (obj != null) {
(1)— table[i] = obj;
(2)— i++;
 }
 }

 …
} // class Table

Now consider what might happen if thread A calls “Insert(x)” concurrently with
thread B calling “Insert(y)”. If the order of execution happens to be that thread A
executes (1), then thread B executes (1), then thread A executes (2), then thread B
executes (2), confusion will result. Instead of the intended effect (that “x” and “y”
are inserted into “table”, at separate indexes), the final state would be that “y” is
correctly in the table, but “x” has been lost. Further, since (2) has been executed
twice, an empty (null) slot has been left orphaned in the table. Such errors would
be prevented by enclosing (1) and (2) in a “lock” statement, as follows.

 public void Insert(Object obj) {
 if (obj != null) {
 lock(this) {
(1)— table[i] = obj;
(2)— i++;
 }
 }
 }

The “lock” statement enforces serialization of the threads’ actions, so that one
thread executes the statements inside the “lock” statement, then the other thread
executes them.

The effects of unsynchronized access to mutable data can be bizarre, since
they will depend on the precise timing relationship between your threads. Also,
in most environments the timing relationship is non-deterministic (because of
real-time effects like page faults, or the use of real-time timer facilities, or because
of actual asynchrony in a multi-processor system).

It would be possible to design a language that lets you explicitly associate
variables with particular locks, and then prevents you accessing the variables
unless the thread holds the appropriate lock. But C# (and most other languages)
provides no support for this: you can choose any object whatsoever as the lock
for a particular set of variables. An alternative way to avoid unsynchronized
access is to use static or dynamic analysis tools. For example, there are
experimental tools [15] that check at runtime which locks are held while
accessing each variable, and that warn you if an inconsistent set of locks (or no

10 . An Introduction to Programming with C# Threads

lock at all) is used. If you have such tools available, seriously consider using
them. If not, then you need considerable programmer discipline and careful use
of searching and browsing tools. Unsynchronized, or improperly synchronized,
access becomes increasingly likely as your locking granularity becomes finer and
your locking rules become correspondingly more complex. Such problems will
arise less often if you use very simple, coarse grained, locking. For example, use
the object instance’s lock to protect all the instance fields of a class, and use
“typeof(theClass)” to protect the static fields. Unfortunately, very coarse grained
locking can cause other problems, described below. So the best advice is to make
your use of locks be as simple as possible, but no simpler. If you are tempted to
use more elaborate arrangements, be entirely sure that the benefits are worth the
risks, not just that the program looks nicer.

4.2. Invariants

When the data protected by a lock is at all complicated, many programmers find
it convenient to think of the lock as protecting the invariant of the associated data.
An invariant is a boolean function of the data that is true whenever the
associated lock is not held. So any thread that acquires the lock knows that it
starts out with the invariant true. Each thread has the responsibility to restore the
invariant before releasing the lock. This includes restoring the invariant before
calling “Wait”, since that also releases the lock.

For example, in the code fragment above (for inserting an element into a
table), the invariant is that “i” is the index of the first “null” element in “table”,
and all elements beyond index “i” are “null”. Note that the variables mentioned
in the invariant are accessed only while “this” is locked. Note also that the
invariant is not true after the first assignment statement but before the second
one—it is only guaranteed when the object is unlocked.

Frequently the invariants are simple enough that you barely think about
them, but often your program will benefit from writing them down explicitly.
And if they are too complicated to write down, you’re probably doing something
wrong. You might write down the invariants informally, as in the previous
paragraph, or you might use some formal specification language. It’s often
sensible to have your program explicitly check its invariants. It’s also generally a
good idea to state explicitly, in the program, which lock protects which fields.

Regardless of how formally you like to think of invariants, you need to be
aware of the concept. Releasing the lock while your variables are in a transient
inconsistent state will inevitably lead to confusion if it is possible for another
thread to acquire the lock while you’re in this state.

4.3. Cheating

If the data being protected by a lock is particularly simple (for example just one
integer, or even just one boolean), programmers are often tempted to skip using
the lock, since it introduces significant overhead and they “know” that the
variables will be accessed with atomic instructions and that instructions are not
interleaved. With modern compilers and modern machine architectures, this is
an exceedingly dangerous assumption. Compilers are free to re-order actions

 An Introduction to Programming with C# Threads . 11

within the specified formal semantics of the programming language, and will
often do so. They do this for simple reasons, like moving code out of a loop, or
for more subtle ones, like optimizing use of a processor’s on-chip memory cache
or taking advantage of otherwise idle machine cycles. Additionally, multi-
processor machine architectures have amazingly complex rules for when data
gets moved between processor caches and main memory, and how this is
synchronized between the processors. (Even if a processor hasn’t ever referenced
a variable, the variable might be in the processor’s cache, because the variable is
in the same cache line as some other variable that the processor did reference.)
These considerations make it quite unlikely that you can look at some
unsynchronized code and guess how the memory actions of multiple threads
will be interleaved. You might succeed in particular cases, when you know a lot
about the particular machine where your program will run. But in general, you
should keep well clear of such assumptions: they are likely to result in a program
that works correctly almost all the time, but very occasionally mysteriously gets
the wrong answer. Finally, bear in mind that the existing C# language
specification is completely silent about exactly how unsynchronized data is
shared between threads.*

One cheating technique that people often try is called “double-check
locking”. The paradigm tries to initialize a shared variable shortly before its first
use, in such a way that the variable can subsequently be accessed without using a
“lock” statement. For example, consider code like the following.

 Foo theFoo = null;

 public Foo GetTheFoo() {
 if (theFoo == null) {
 lock (this) {
 if (theFoo == null) theFoo = new Foo();
 }
 }
 return theFoo;
 }

The programmer’s intention here is that the first thread to call “GetTheFoo” will
cause the requisite object to be created and initialized, and all subsequent calls of
“GetTheFoo” will return this same object. The code is tempting, and it would be
correct with the compilers and multi-processors of the 1980’s. Today, it is wrong.
The failings of this paradigm have been widely discussed in the Java community
[1], and the same issues apply to C#. There are two bugs.

* The Java language specification has a more precise memory model [7, chapter 17], which
says, approximately, that object references and scalar quantities no bigger than 32 bits are
accessed atomically. Nevertheless, stay away from these assumptions: they are subtle,
complex, and quite likely to be incorrectly implemented on at least one of the machines
that you care about. This particular part of the Java language specification is also still
subject to change.

12 . An Introduction to Programming with C# Threads

First, if “GetTheFoo” is called on processor A and then later on processor B,
it’s possible that processor B will see the correct non-null object reference for
“theFoo”, but will read incorrectly cached values of the instance variables inside
“theFoo”, because they arrived in B’s cache at some earlier time, being in the
same cache line as some other variable that’s cached on B. *

Second, it’s legitimate for the compiler to re-order statements within a “lock”
statement, if the compiler can prove that they don’t interfere. Consider what
might happen if the compiler makes the initialization code for “new Foo()” be
inline, and then re-orders things so that the assignment to “theFoo” happens
before the initialization of the instance variable’s of “theFoo”. A thread running
concurrently on another processor might then see a non-null “theFoo” before the
object instance is properly initialized.

There are many ways that people have tried to fix this [1]. They’re all wrong.
The only way you can be sure of making this code work is the obvious one,
where you wrap the entire thing in a “lock” statement:

 Foo theFoo = null;

 public Foo GetTheFoo() {
 lock (this) {
 if (theFoo == null) theFoo = new Foo();
 return theFoo;
 }
 }

4.4. Deadlocks involving only locks

In some thread systems [4] your program will deadlock if a thread tries to lock
an object that it has already locked. C# (and Java) explicitly allows a thread to
lock an object multiple times in a nested fashion: the runtime system keeps track
of which thread has locked the object, and how often. The object remains locked
(and therefore concurrent access by other threads remains blocked) until the
thread has unlocked the object the same number of times.

This “re-entrant locking” feature is a convenience for the programmer: from
within a “lock” statement you can call another of your methods that also locks
the same object, with no risk of deadlock. However, the feature is double-edged:
if you call the other method at a time when the monitor invariants are not true,
then the other method will likely misbehave. In systems that prohibit re-entrant
locking such misbehavior is prevented, being replaced by a deadlock. As I said
earlier, deadlock is usually a more pleasant bug than returning the wrong
answer.

* I find it interesting that this discussion is quite different from the corresponding one in
the 1989 version of this paper [2]. The speed discrepancy between processors and their
main memory has increased so much that the resulting computer architectures have
impacted high-level design issues in writing concurrent programs. Programming
techniques that previously were correct have become incorrect.

 An Introduction to Programming with C# Threads . 13

There are numerous more elaborate cases of deadlock involving just locks,
for example:

thread A locks object M1;
thread B locks object M2;
thread A blocks trying to lock M2;
thread B blocks trying to lock M1.

The most effective rule for avoiding such deadlocks is to have a partial order for
the acquisition of locks in your program. In other words, arrange that for any
pair of objects {M1, M2}, each thread that needs to have M1 and M2 locked
simultaneously does so by locking the objects in the same order (for example, M1
is always locked before M2). This rule completely avoids deadlocks involving
only locks (though as we will see later, there are other potential deadlocks when
your program uses the “Monitor.Wait” method).

There is a technique that sometimes makes it easier to achieve this partial
order. In the example above, thread A probably wasn’t trying to modify exactly
the same set of data as thread B. Frequently, if you examine the algorithm
carefully you can partition the data into smaller pieces protected by separate
locks. For example, when thread B tried to lock M1, it might actually want access
to data disjoint from the data that thread A was accessing under M1. In such a
case you might protect this disjoint data by locking a separate object, M3, and
avoid the deadlock. Note that this is just a technique to enable you to have a
partial order on the locks (M1 before M2 before M3, in this example). But
remember that the more you pursue this hint, the more complicated your locking
becomes, and the more likely you are to become confused about which lock is
protecting which data, and end up with some unsynchronized access to shared
data. (Did I mention that having your program deadlock is almost always a
preferable risk to having your program give the wrong answer?)

4.5. Poor performance through lock conflicts

Assuming that you have arranged your program to have enough locks that all
the data is protected, and a fine enough granularity that it does not deadlock, the
remaining locking problems to worry about are all performance problems.

Whenever a thread is holding a lock, it is potentially stopping another thread
from making progress—if the other thread blocks trying to acquire the lock. If
the first thread can use all the machine’s resources, that is probably fine. But if
the first thread, while holding the lock, ceases to make progress (for example by
blocking on another lock, or by taking a page fault, or by waiting for an i/o
device), then the total throughput of your program is degraded. The problem is
worse on a multi-processor, where no single thread can utilize the entire
machine; here if you cause another thread to block, it might mean that a
processor goes idle. In general, to get good performance you must arrange that
lock conflicts are rare events. The best way to reduce lock conflicts is to lock at a
finer granularity; but this introduces complexity and increases the risk of
unsynchronized access to data. There is no way out of this dilemma—it is a
trade-off inherent in concurrent computation.

14 . An Introduction to Programming with C# Threads

The most typical example where locking granularity is important is in a class
that manages a set of objects, for example a set of open buffered files. The
simplest strategy is to use a single global lock for all the operations: open, close,
read, write, and so forth. But this would prevent multiple writes on separate files
proceeding in parallel, for no good reason. So a better strategy is to use one lock
for operations on the global list of open files, and one lock per open file for
operations affecting only that file. Fortunately, this is also the most obvious way
to use the locks in an object-oriented language: the global lock protects the global
data structures of the class, and each object’s lock is used to protect the data
specific to that instance. The code might look something like the following.

class F {
 static F head = null; // protected by typeof(F)
 string myName; // immutable
 F next = null; // protected by typeof(F)
 D data; // protected by “this”

 public static F Open(string name) {
 lock (typeof(F)) {
 for (F f = head; f != null; f = f.next) {
 if (name.Equals(f.myName)) return f;
 }
 // Else get a new F, enqueue it on “head” and return it.
 return …;
 }
 }

 public void Write(F f, string msg) {
 lock (this) {
 // Access “f.data”
 }
 }

}

There is one important subtlety in the above example. The way that I chose to
implement the global list of files was to run a linked list through the “next”
instance field. This resulted in an example where part of the instance data must
be protected by the global lock, and part by the per-object instance lock. This is
just one of a wide variety of situations where you might choose to protect
different fields of an object with different locks, in order to get better efficiency
by accessing them simultaneously from different threads.

Unfortunately, this usage has some of the same characteristics as
unsynchronized access to data. The correctness of the program relies on the
ability to access different parts of the computer’s memory concurrently from
different threads, without the accesses interfering with each other. The Java
memory model specifies that this will work correctly as long as the different
locks protect different variables (e.g., different instance fields). The C# language

 An Introduction to Programming with C# Threads . 15

specification, however, is currently silent on this subject, so you should program
conservatively. I recommend that you assume accesses to object references, and
to scalar values of 32 bits or more (e.g., “int” or “float”) can proceed
independently under different locks, but that accesses to smaller values (like
“bool”) might not. And it would be most unwise to access different elements of
an array of small values such as “bool” under different locks.

There is an interaction between locks and the thread scheduler that can produce
particularly insidious performance problems. The scheduler is the part of the
thread implementation (often part of the operating system) that decides which of
the non-blocked threads should actually be given a processor to run on.
Generally the scheduler makes its decision based on a priority associated with
each thread. (C# allows you to adjust a thread’s priority by assigning to the
thread’s “Priority” property*.) Lock conflicts can lead to a situation where some
high priority thread never makes progress at all, despite the fact that its high
priority indicates that it is more urgent than the threads actually running.

This can happen, for example, in the following scenario on a uni-processor.
Thread A is high priority, thread B is medium priority and thread C is low
priority. The sequence of events is:

C is running (e.g., because A and B are blocked somewhere);
C locks object M;
B wakes up and pre-empts C
 (i.e., B runs instead of C since B has higher priority);
B embarks on some very long computation;
A wakes up and pre-empts B (since A has higher priority);
A tries to lock M, but can’t because it’s still locked by C;
A blocks, and so the processor is given back to B;
B continues its very long computation.

 The net effect is that a high priority thread (A) is unable to make progress even
though the processor is being used by a medium priority thread (B). This state is
stable until there is processor time available for the low priority thread C to
complete its work and unlock M. This problem is known as “priority inversion”.

The programmer can avoid this problem by arranging for C to raise its
priority before locking M. But this can be quite inconvenient, since it involves
considering for each lock which other thread priorities might be involved. The
best solution to this problem lies in the operating system’s thread scheduler.
Ideally, it should artificially raise C’s priority while that’s needed to enable A to
eventually make progress. The Windows NT scheduler doesn’t quite do this, but
it does arrange that even low priority threads do make progress, just at a slower
rate. So C will eventually complete its work and A will make progress.

* Recall that thread priority is not a synchronization mechanism: a high priority thread can
easily get overtaken by a lower priority thread, for example if the high priority threads
hits a page fault.

16 . An Introduction to Programming with C# Threads

4.6. Releasing the lock within a “lock” statement

There are times when you want to unlock the object in some region of program
nested inside a “lock” statement. For example, you might want to unlock the
object before calling down to a lower level abstraction that will block or execute
for a long time (in order to avoid provoking delays for other threads that want to
lock the object). C# (but not Java) provides for this usage by offering the raw
operations “Enter(m)” and “Exit(m)” as static methods of the “Monitor” class. You
must exercise extra care if you take advantage of this. First, you must be sure that
the operations are correctly bracketed, even in the presence of exceptions.
Second, you must be prepared for the fact that the state of the monitor’s data
might have changed while you had the object unlocked. This can be tricky if you
called “Exit” explicitly (instead of just ending the “lock” statement) at a place
where you were embedded in some flow control construct such as a conditional
clause. Your program counter might now depend on the previous state of the
monitor’s data, implicitly making a decision that might no longer be valid. So I
discourage this paradigm, to reduce the tendency to introduce quite subtle bugs.

Some thread systems, though not C#, allow one other use of separate calls of
“Enter(m)” and “Exit(m)”, in the vicinity of forking. You might be executing with
an object locked and want to fork a new thread to continue working on the
protected data, while the original thread continues without further access to the
data. In other words, you would like to transfer the holding of the lock to the
newly forked thread, atomically. You can achieve this by locking the object with
“Enter(m)” instead of a “lock” statement, and later calling “Exit(m)” in the forked
thread. This tactic is quite dangerous—it is difficult to verify the correct
functioning of the monitor. I recommend that you don’t do this even in systems
that (unlike C#) allow it.

5. USING WAIT AND PULSE: SCHEDULING SHARED RESOURCES

When you want to schedule the way in which multiple threads access some
shared resource, and the simple one-at-a-time mutual exclusion provided by
locks is not sufficient, you’ll want to make your threads block by waiting on an
object (the mechanism called “condition variables” in other thread systems).

Recall the “GetFromList” method of my earlier “KV” example. If the linked list
is empty, “GetFromList” blocks until “AddToList” generates some more data:

 lock (typeof(KV)) {
 while (head == null) Monitor.Wait(typeof(KV));
 res = head; head = res.next; res.next = null;
 }

This is fairly straightforward, but there are still some subtleties. Notice that when
a thread returns from the call of “Wait” its first action after re-locking the object is
to check once more whether the linked list is empty. This is an example of the
following general pattern, which I strongly recommend for all your uses of
condition variables:

 while (!expression) Monitor.Wait(obj);

 An Introduction to Programming with C# Threads . 17

You might think that re-testing the expression is redundant: in the example
above, “AddToList” made the list non-empty before calling “Pulse”. But the
semantics of “Pulse” do not guarantee that the awoken thread will be the next to
lock the object. It is possible that some other consumer thread will intervene, lock
the object, remove the list element and unlock the object, before the newly
awoken thread can lock the object.* A secondary benefit of this programming
rule is that it would allow the implementation of “Pulse” to (rarely) awaken more
than one thread; this can simplify the implementation of “Wait”, although neither
Java nor C# actually give the threads implementer this much freedom.

But the main reason for advocating use of this pattern is to make your
program more obviously, and more robustly, correct. With this style it is
immediately clear that the expression is true before the following statements are
executed. Without it, this fact could be verified only by looking at all the places
that might pulse the object. In other words, this programming convention allows
you to verify correctness by local inspection, which is always preferable to global
inspection.

A final advantage of this convention is that it allows for simple
programming of calls to “Pulse” or “PulseAll”—extra wake-ups are benign.
Carefully coding to ensure that only the correct threads are awoken is now only a
performance question, not a correctness one (but of course you must ensure that
at least the correct threads are awoken).

5.1. Using “PulseAll”

The “Pulse” primitive is useful if you know that at most one thread can usefully
be awoken. “PulseAll” awakens all threads that have called “Wait”. If you always
program in the recommended style of re-checking an expression after return
from “Wait”, then the correctness of your program will be unaffected if you
replace calls of “Pulse” with calls of “PulseAll”.

One use of “PulseAll” is when you want to simplify your program by
awakening multiple threads, even though you know that not all of them can
make progress. This allows you to be less careful about separating different wait
reasons into different queues of waiting threads. This use trades slightly poorer
performance for greater simplicity. Another use of “PulseAll” is when you really
need to awaken multiple threads, because the resource you have just made
available can be used by several other threads.

A simple example where “PulseAll” is useful is in the scheduling policy
known as shared/exclusive locking (or readers/writers locking). Most commonly
this is used when you have some shared data being read and written by various
threads: your algorithm will be correct (and perform better) if you allow multiple
threads to read the data concurrently, but a thread modifying the data must do
so when no other thread is accessing the data.

*The condition variables described here are not the same as those originally described by
Hoare [9]. Hoare’s design would indeed provide a sufficient guarantee to make this re-
testing redundant. But the design given here appears to be preferable, since it permits a
much simpler implementation, and the extra check is not usually expensive.

18 . An Introduction to Programming with C# Threads

The following methods implement this scheduling policy*. Any thread
wanting to read your data calls “AcquireShared”, then reads the data, then calls
“ReleaseShared”. Similarly any thread wanting to modify the data calls
“AcquireExclusive”, then modifies the data, then calls “ReleaseExclusive”. When
the variable “i” is greater than zero, it counts the number of active readers. When
it is negative there is an active writer. When it is zero, no thread is using the data.
If a potential reader inside “AcquireShared” finds that “i” is less than zero, it must
wait until the writer calls “ReleaseExclusive”.

class RW {
 int i = 0; // protected by “this”

 public void AcquireExclusive() {
 lock (this) {
 while (i != 0) Monitor.Wait(this);
 i = -1;
 }
 }

 public void AcquireShared() {
 lock (this) {
 while (i < 0) Monitor.Wait(this);
 i++;
 }
 }

 public void ReleaseExclusive() {
 lock (this) {
 i = 0;
 Monitor.PulseAll(this);
 }
 }

 public void ReleaseShared() {
 lock (this) {
 i - - ;
 if (i == 0) Monitor.Pulse(this);
 }
 }

} // class RW

* The C# runtime includes a class to do this for you, “ReaderWriterLock”. I pursue this
example here partly because the same issues arise in lots of more complex problems, and
partly because the specification of “ReaderWriterLock” is silent on how or whether its
implementation addresses the issues that we’re about to discuss. If you care about these
issues, you might find that your own code will work better than “ReaderWriterLock”.

 An Introduction to Programming with C# Threads . 19

Using “PulseAll” is convenient in “ReleaseExclusive”, because a terminating writer
does not need to know how many readers are now able to proceed. But notice
that you could re-code this example using just “Pulse”, by adding a counter of
how many readers are waiting, and calling “Pulse” that many times in
“ReleaseExclusive”. The “PulseAll” facility is just a convenience, taking advantage
of information already available to the threads implementation. Notice that there
is no reason to use “PulseAll” in “ReleaseShared”, because we know that at most
one blocked writer can usefully make progress.

This particular encoding of shared/exclusive locking exemplifies many of the
problems that can occur when waiting on objects, as we will see in the following
sections. As we discuss these problems, I will present revised encodings of this
locking paradigm.

5.2. Spurious wake-ups

If you keep your use of “Wait” very simple, you might introduce the possibility of
awakening threads that cannot make useful progress. This can happen if you use
“PulseAll” when “Pulse” would be sufficient, or if you have threads waiting on a
single object for multiple different reasons. For example, the shared/exclusive
locking methods above have readers and writers both waiting on “this”. This
means that when we call “PulseAll” in “ReleaseExclusive”, the effect will be to
awaken both classes of blocked threads. But if a reader is first to lock the object, it
will increment “i” and prevent an awoken potential writer from making progress
until the reader later calls “ReleaseShared”. The cost of this is extra time spent in
the thread scheduler, which is typically an expensive place to be. If your problem
is such that these spurious wake-ups will be common, then you really want two
places to wait—one for readers and one for writers. A terminating reader need
only call “Pulse” on the object where writers are waiting; a terminating writer
would call “PulseAll” on one of the objects, depending on which was non-empty.

Unfortunately, in C# (and in Java) for each lock we can only wait on one
object, the same one that we’re using as the lock. To program around this we
need to use a second object, and its lock. It is surprisingly easy to get this wrong,
generally by introducing a race where some number of threads have committed
to waiting on an object, but they don’t have enough of a lock held to prevent
some other thread calling “PulseAll” on that object, and so the wake-up gets lost
and the program deadlocks. I believe the following “CV” class, as used in the
following revised “RW” example, gets this all right (and you should be able to re-
use this exact “CV” class in other situations).*

class CV {
 Object m; // The lock associated with this CV
 public CV(Object m) { // Constructor
 lock(this) this.m = m;
 }

* The corresponding “CV” class for Java is more difficult to write, because there is no
direct equivalent of the raw “Monitor.Enter” and “Monitor.Exit” methods used here.

20 . An Introduction to Programming with C# Threads

 public void Wait() { // Pre: this thread holds “m” exactly once
 bool enter = false;
 // Using the “enter” flag gives clean error handling if m isn’t locked
 try {
 lock (this) {
 Monitor.Exit(m); enter = true; Monitor.Wait(this);
 }
 } finally {
 if (enter) Monitor.Enter(m);
 }
 }

 public void Pulse() {
 lock (this) Monitor.Pulse(this);
 }

 public void PulseAll() {
 lock (this) Monitor.PulseAll(this);
 }

} // class CV

We can now revise “RW” to arrange that only waiting readers wait on the main
“RW” object, and that waiting writers wait on the auxiliary “wQueue” object.
(Initializing “wQueue” is a little tricky, since we can’t reference “this” when
initializing an instance variable.)

class RW {
 int i = 0; // protected by “this”
 int readWaiters = 0; // protected by “this”
 CV wQueue = null;

 public void AcquireExclusive() {
 lock (this) {
 if (wQueue == null) wQueue = new CV(this);
 while (i != 0) wQueue.Wait();
 i = -1;
 }
 }

 public void AcquireShared() {
 lock (this) {
 readWaiters++;
 while (i < 0) Monitor.Wait(this);
 readWaiters- - ;
 i++;
 }
 }

 An Introduction to Programming with C# Threads . 21

 public void ReleaseExclusive() {
 lock (this) {
 i = 0;
 if (readWaiters > 0) {
 Monitor.PulseAll(this);
 } else {
 if (wQueue != null) wQueue.Pulse();
 }
 }
 }

 public void ReleaseShared() {
 lock (this) {
 i - - ;
 if (i == 0 && wQueue != null) wQueue.Pulse();
 }
 }

} // class RW

5.3. Spurious lock conflicts

Another potential source of excessive scheduling overhead comes from
situations where a thread is awakened from waiting on an object, and before
doing useful work the thread blocks trying to lock an object. In some thread
designs, this is a problem on most wake-ups, because the awakened thread will
immediately try to acquire the lock associated with the condition variable, which
is currently held by the thread doing the wake-up. C# avoids this problem in
simple cases: calling “Monitor.Pulse” doesn’t actually let the awakened thread
start executing. Instead, it is transferred to a “ready queue” on the object. The
ready queue consists of threads that are ready and willing to lock the object.
When a thread unlocks the object, as part of that operation it will take one thread
off the ready queue and start it executing.

Nevertheless there is still a spurious lock conflict in the “RW” class. When a
terminating writer inside “ReleaseExclusive” calls “wQueue.Pulse(this)”, it still has
“this” locked. On a uni-processor this would often not be a problem, but on a
multi-processor the effect is liable to be that a potential writer is awakened inside
“CV.Wait”, executes as far as the “finally” block, and then blocks trying to lock
“m”—because that lock is still held by the terminating writer, executing
concurrently. A few microseconds later the terminating writer unlocks the “RW”
object, allowing the new writer to continue. This has cost us two extra re-
schedule operations, which is a significant expense.

Fortunately there is a simple solution. Since the terminating writer does not
access the data protected by the lock after the call of “wQueue.Pulse”, we can
move that call to after the end of the “lock” statement, as follows. Notice that
accessing “i” is still protected by the lock. A similar situation occurs in
“ReleaseShared”.

22 . An Introduction to Programming with C# Threads

 public void ReleaseExclusive() {
 bool doPulse = false;
 lock (this) {
 i = 0;
 if (readWaiters > 0) {
 Monitor.PulseAll(this);
 } else {
 doPulse = (wQueue != null);
 }
 }
 if (doPulse) wQueue.Pulse();
 }

 public void ReleaseShared() {
 bool doPulse = false;
 lock (this) {
 i - - ;
 if (i == 0) doPulse = (wQueue != null);
 }
 if (doPulse) wQueue.Pulse();
 }

There are potentially even more complicated situations. If getting the best
performance is important to your program, you need to consider carefully
whether a newly awakened thread will necessarily block on some other object
shortly after it starts running. If so, you need to arrange to defer the wake-up to a
more suitable time. Fortunately, most of the time in C# the ready queue used by
“Monitor.Pulse” will do the right thing for you automatically.

5.4. Starvation

Whenever you have a program that is making scheduling decisions, you must
worry about how fair these decisions are; in other words, are all threads equal or
are some more favored? When you are locking an object, this consideration is
dealt with for you by the threads implementation—typically by a first-in-first-out
rule for each priority level. Mostly, this is also true when you’re using
“Monitor.Wait” on an object. But sometimes the programmer must become
involved. The most extreme form of unfairness is “starvation”, where some
thread will never make progress. This can arise in our reader-writer locking
example (of course). If the system is heavily loaded, so that there is always at
least one thread wanting to be a reader, the existing code will starve writers. This
would occur with the following pattern.

Thread A calls “AcquireShared”; i := 1;
Thread B calls “AcquireShared”; i := 2;
Thread A calls “ReleaseShared”; i := 1;
Thread C calls “AcquireShared”; i := 2;
Thread B calls “ReleaseShared”; i := 1; … etc.

 An Introduction to Programming with C# Threads . 23

Since there is always an active reader, there is never a moment when a writer can
proceed; potential writers will always remain blocked, waiting for “i” to reduce
to 0. If the load is such that this is really a problem, we need to make the code yet
more complicated. For example, we could arrange that a new reader would defer
inside “AcquireShared” if there was a blocked potential writer. We could do this
by adding a counter for blocked writers, as follows.

 int writeWaiters = 0;

 public void AcquireExclusive() {
 lock (this) {
 if (wQueue == null) wQueue = new CV(this);
 writeWaiters++;
 while (i != 0) wQueue.Wait();
 writeWaiters- - ;
 i = -1;
 }
 }

 public void AcquireShared() {
 lock (this) {
 readWaiters++;
 if (writeWaiters > 0) {
 wQueue.Pulse();
 Monitor.Wait(this);
 }
 while (i < 0) Monitor.Wait(this);
 readWaiters- - ;
 i++;
 }
 }

There is no limit to how complicated this can become, implementing ever more
elaborate scheduling policies. The programmer must exercise restraint, and only
add such features if they are really required by the actual load on the resource.

5.5. Complexity

As you can see, worrying about these spurious wake-ups, lock conflicts and
starvation makes the program more complicated. The first solution of the
reader/writer problem that I showed you had 16 lines inside the method bodies;
the final version had 39 lines (including the “CV” class), and some quite subtle
reasoning about its correctness. You need to consider, for each case, whether the
potential cost of ignoring the problem is enough to merit writing a more complex
program. This decision will depend on the performance characteristics of your
threads implementation, on whether you are using a multi-processor, and on the
expected load on your resource. In particular, if your resource is mostly not in
use then the performance effects will not be a problem, and you should adopt the

24 . An Introduction to Programming with C# Threads

simplest coding style. But sometimes they are important, and you should only
ignore them after explicitly considering whether they are required in your
particular situation.

5.6. Deadlock

You can introduce deadlocks by waiting on objects, even although you have been
careful to have a partial order on acquiring locks. For example, if you have two
resources (call them (1) and (2)), the following sequence of actions produces a
deadlock.

Thread A acquires resource (1);
Thread B acquires resource (2);
Thread A wants (2), so it calls “Monitor.Wait” to wait for (2);
Thread B wants (1), so it calls “Monitor.Wait” to wait for (1).

Deadlocks such as this are not significantly different from the ones we discussed
in connection with locks. You should arrange that there is a partial order on the
resources managed with condition variables, and that each thread wishing to
acquire multiple resources does so according to this order. So, for example, you
might decide that (1) is ordered before (2). Then thread B would not be permitted
to try to acquire (1) while holding (2), so the deadlock would not occur.

One interaction between locks and waiting on objects is a subtle source of
deadlock. Consider the following (extremely simplified) two methods.

class GG {
 static Object a = new Object();
 static Object b = new Object();
 static bool ready = false;

 public static void Get() {
 lock (a) {
 lock (b) {
 while (!ready) Monitor.Wait(b);
 }
 }
 }

 public static void Give() {
 lock (a) {
 lock (b) {
 ready = true;
 Monitor.Pulse(b);
 }
 }
 }

} // class GG

 An Introduction to Programming with C# Threads . 25

If “ready” is “false” and thread A calls “Get”, it will block on the call of
“Monitor.Wait(b)”. This unlocks “b”, but leaves “a” locked. So if thread B calls
“Give”, intending to cause a call of “Monitor.Pulse(b)”, it will instead block trying
to lock “a”, and your program will have deadlocked. Clearly, this example is
trivial, since the lock of “a” does not protect any data (and the potential for
deadlock is quite apparent anyway), but the overall pattern does occur.

Most often this problem occurs when you acquire a lock at one abstraction
level of your program then call down to a lower level, which (unknown to the
higher level) blocks. If this block can be freed only by a thread that is holding the
higher level lock, you will deadlock. It is generally risky to call into a lower level
abstraction while holding one of your locks, unless you understand fully the
circumstances under which the called method might block. One solution here is
to explicitly unlock the higher level lock before calling the lower level
abstraction, as we discussed earlier; but as we discussed, this solution has its
own dangers. A better solution is to arrange to end the “lock” statement before
calling down. You can find further discussions of this problem, known as the
“nested monitor problem”, in the literature [8].

6. USING THREADS: WORKING IN PARALLEL

As we discussed earlier, there are several classes of situations where you will
want to fork a separate thread: to utilize a multi-processor; to do useful work
while waiting for a slow device; to satisfy human users by working on several
actions at once; to provide network service to multiple clients simultaneously;
and to defer work until a less busy time.

It is quite common to find straightforward application programs using
several threads. For example, you might have one thread doing your main
computation, a second thread writing some output to a file, a third thread
waiting for (or responding to) interactive user input, and a fourth thread running
in background to clean up your data structures (for example, re-balancing a tree).
It’s also quite likely that library packages you use will create their own threads
internally.

When you are programming with threads, you usually drive slow devices
through synchronous library calls that suspend the calling thread until the device
action completes, but allow other threads in your program to continue. You will
find no need to use older schemes for asynchronous operation (such as i/o
completion routines). If you don’t want to wait for the result of a device
interaction, invoke it in a separate thread. If you want to have multiple device
requests outstanding simultaneously, invoke them in multiple threads. In
general the libraries provided with the C# environment provide appropriate
synchronous calls for most purposes. You might find that legacy libraries don’t
do this (for example, when your C# program is calling COM objects); in those
cases, it’s usually a good idea to add a layer providing a synchronous calling
paradigm, so that the rest of your program can be written in a natural thread-
based style.

26 . An Introduction to Programming with C# Threads

6.1. Using Threads in User Interfaces

If your program is interacting with a human user, you will usually want it to be
responsive even while it is working on some request. This is particularly true of
window-oriented interfaces. It is particularly infuriating to the user if his
interactive display goes dumb (for example, windows don’t repaint or scrollbars
don’t scroll) just because a database query is taking a long time. You can achieve
responsiveness by using extra threads

In the C# Windows Forms machinery your program hears about user
interface events by registering delegates as event-handlers for the various
controls. When an event occurs, the control calls the appropriate event-handler.
But the delegate is called synchronously: until it returns, no more events will be
reported to your program, and that part of the user’s desktop will appear frozen.
So you must decide whether the requested action is short enough that you can
safely do it synchronously, or whether you should do the work in a separate
thread. A good rule of thumb is that if the event-handler can complete in a length
of time that’s not significant to a human (say, 30 milliseconds) then it can run
synchronously. In all other cases, the event handler should just extract the
appropriate parameter data from the user interface state (e.g., the contents of text
boxes or radio buttons), and arrange for an asynchronous thread to do the work.
In making this judgment call you need to consider the worst case delay that your
code might incur.

When you decide to move the work provoked by a user interface event into a
separate thread, you need to be careful. You must capture a consistent view of
the relevant parts of the user interface synchronously, in the event handler
delegate, before transferring the work to the asynchronous worker thread. You
must also take care that the worker thread will desist if it becomes irrelevant
(e.g., the user clicks “Cancel”). In some applications you must serialize correctly
so that the work gets done in the correct order. Finally, you must take care in
updating the user interface with the worker’s results. It’s not legal for an
arbitrary thread to modify the user interface state. Instead, your worker thread
must use the “Invoke” method of a control to modify its state. This is because the
various control instance objects are not thread-safe: their methods cannot be
called concurrently. Two general techniques can be helpful. One is to keep
exactly one worker thread, and arrange for your event handlers to feed it
requests through a queue that you program explicitly. An alternative is to create
worker threads as needed, perhaps with sequence numbers on their requests
(generated by your event handlers).

Canceling an action that’s proceeding in an asynchronous worker thread can
be difficult. In some cases it’s appropriate to use the “Thread.Interrupt” mechanism
(discussed later). In other cases that’s quite difficult to do correctly. In those
cases, consider just setting a flag to record the cancellation, then checking that
flag before the worker thread does anything with its results. A cancelled worker
thread can then silently die if it has become irrelevant to the user’s desires. In all
cancellation cases, remember that it’s not usually necessary to do all the clean-up
synchronously with the cancellation request. All that’s needed is that after you
respond to the cancellation request, the user will never see anything that results
from the cancelled activity.

 An Introduction to Programming with C# Threads . 27

6.2. Using Threads in Network Servers

Network servers are usually required to service multiple clients concurrently. If
your network communication is based on RPC [3], this will happen without any
work on your part, since the server side of your RPC system will invoke each
concurrent incoming call in a separate thread, by forking a suitable number of
threads internally to its implementation. But you can use multiple threads even
with other communication paradigms. For example, in a traditional connection-
oriented protocol (such as file transfer layered on top of TCP), you should
probably fork one thread for each incoming connection. Conversely, if you are
writing a client program and you don’t want to wait for the reply from a network
server, invoke the server from a separate thread.

6.3. Deferring Work

The technique of adding threads in order to defer work is quite valuable. There
are several variants of the scheme. The simplest is that as soon as your method
has done enough work to compute its result, you fork a thread to do the
remainder of the work, and then return to your caller in the original thread. This
reduces the latency of your method call (the elapsed time from being called to
returning), in the hope that the deferred work can be done more cheaply later
(for example, because a processor goes idle). The disadvantage of this simplest
approach is that it might create large numbers of threads, and it incurs the cost of
calling “Fork” each time. Often, it is preferable to keep a single housekeeping
thread and feed requests to it. It’s even better when the housekeeper doesn't
need any information from the main threads, beyond the fact that there is work
to be done. For example, this will be true when the housekeeper is responsible
for maintaining a data structure in an optimal form, although the main threads
will still get the correct answer without this optimization. An additional
technique here is to program the housekeeper either to merge similar requests
into a single action, or to restrict itself to run not more often than a chosen
periodic interval.

6.4. Pipelining

On a multi-processor, there is one specialized use of additional threads that is
particularly valuable. You can build a chain of producer-consumer relationships,
known as a pipeline. For example, when thread A initiates an action, all it does is
enqueue a request in a buffer. Thread B takes the action from the buffer,
performs part of the work, then enqueues it in a second buffer. Thread C takes it
from there and does the rest of the work. This forms a three-stage pipeline. The
three threads operate in parallel except when they synchronize to access the
buffers, so this pipeline is capable of utilizing up to three processors. At its best,
pipelining can achieve almost linear speed-up and can fully utilize a multi-
processor. A pipeline can also be useful on a uni-processor if each thread will
encounter some real-time delays (such as page faults, device handling or
network communication).

28 . An Introduction to Programming with C# Threads

For example, the following program fragment uses a simple three stage
pipeline. The “Queue” class implements a straightforward FIFO queue, using a
linked list. An action in the pipeline is initiated by calling the “PaintChar” method
of an instance of the “PipelinedRasterizer” class. One auxiliary thread executes in
“Rasterizer” and another in “Painter”. These threads communicate through
instances of the “Queue” class. Note that synchronization for “QueueElem” objects
is achieved by holding the appropriate “Queue” object’s lock.

class QueueElem { // Synchronized by Queue’s lock
 public Object v; // Immutable
 public QueueElem next = null; // Protected by Queue lock

 public QueueElem(Object v, QueueElem next) {
 this.v = v;
 this.next = next;
 }

} // class QueueElem

class Queue {
 QueueElem head = null; // Protected by “this”
 QueueElem tail = null; // Protected by “this”

 public void Enqueue(Object v) { // Append “v” to this queue
 lock (this) {
 QueueElem e = new QueueElem(v, head);
 if (head == null) {
 head = e;
 Monitor.PulseAll(this);
 } else {
 tail.next = e;
 }
 tail = e;
 }
 }

 public Object Dequeue() { // Remove first item from queue
 Object res = null;
 lock (this) {
 while (head == null) Monitor.Wait(this);
 res = head.v;
 head = head.next;
 }
 return res;
 }

} // class Queue

 An Introduction to Programming with C# Threads . 29

class PipelinedRasterizer {
 Queue rasterizeQ = new Queue();
 Queue paintQ = new Queue();
 Thread t1, t2;
 Font f;
 Display d;

 public void PaintChar(char c) {
 rasterizeQ.Enqueue(c);
 }

 void Rasterizer() {
 while (true) {
 char c = (char)(rasterizeQ.Dequeue());
 // Convert character to a bitmap …
 Bitmap b = f.Render(c);
 paintQ.Enqueue(b);
 }
 }

 void Painter() {
 while (true) {
 Bitmap b = (Bitmap)(paintQ.Dequeue());
 // Paint the bitmap onto the graphics device …
 d.PaintBitmap(b);
 }
 }

 public PipelinedRasterizer(Font f, Display d) {
 this.f = f;
 this.d = d;
 t1 = new Thread(new ThreadStart(this.Rasterizer));
 t1.Start();
 t2 = new Thread(new ThreadStart(this.Painter));
 t2.Start();
 }
} // class PipelinedRasterizer

There are two problems with pipelining. First, you need to be careful about how
much of the work gets done in each stage. The ideal is that the stages are equal:
this will provide maximum throughput, by utilizing all your processors fully.
Achieving this ideal requires hand tuning, and re-tuning as the program
changes. Second, the number of stages in your pipeline determines statically the
amount of concurrency. If you know how many processors you have, and exactly
where the real-time delays occur, this will be fine. For more flexible or portable
environments it can be a problem. Despite these problems, pipelining is a
powerful technique that has wide applicability.

30 . An Introduction to Programming with C# Threads

6.5. The impact of your environment

The design of your operating system and runtime libraries will affect the extent
to which it is desirable or useful to fork threads. The libraries that are most
commonly used with C# are reasonably thread-friendly. For example, they
include synchronous input and output methods that suspend only the calling
thread, not the entire program. Most object classes come with documentation
saying to what extent it’s safe to call methods concurrently from multiple
threads. You need to note, though, that very many of the classes specify that their
static methods are thread-safe, and their instance methods are not. To call the
instance methods you must either use your own locking to ensure that only one
thread at a time is calling, or in many cases the class provides a “Synchronized”
method that will create a synchronization wrapper around an object instance.

You will need to know some of the performance parameters of your threads
implementation. What is the cost of creating a thread? What is the cost of
keeping a blocked thread in existence? What is the cost of a context switch? What
is the cost of a “lock” statement when the object is not locked? Knowing these,
you will be able to decide to what extent it is feasible or useful to add extra
threads to your program.

6.6. Potential problems with adding threads

You need to exercise a little care in adding threads, or you will find that your
program runs slower instead of faster.

If you have significantly more threads ready to run than there are processors,
you will usually find that your program’s performance degrades. This is partly
because most thread schedulers are quite slow at making general re-scheduling
decisions. If there is a processor idle waiting for your thread, the scheduler can
probably get it there quite quickly. But if your thread has to be put on a queue,
and later swapped into a processor in place of some other thread, it will be more
expensive. A second effect is that if you have lots of threads running they are
more likely to conflict over locks or over the resources managed by your
condition variables.

Mostly, when you add threads just to improve your program’s structure (for
example driving slow devices, or responding to user interface events speedily, or
for RPC invocations) you will not encounter this problem; but when you add
threads for performance purposes (such as performing multiple actions in
parallel, or deferring work, or utilizing multi-processors), you will need to worry
whether you are overloading the system.

But let me stress that this warning applies only to the threads that are ready
to run. The expense of having threads blocked waiting on an object is usually less
significant, being just the memory used for scheduler data structures and the
thread stack. Well-written multi-threaded applications often have quite a large
number of blocked threads (50 is not uncommon).

In most systems the thread creation and termination facilities are not cheap.
Your threads implementation will probably take care to cache a few terminated
thread carcasses, so that you don’t pay for stack creation on each fork, but
nevertheless creating a new thread will probably incur a total cost of about two

 An Introduction to Programming with C# Threads . 31

or three re-scheduling decisions. So you shouldn’t fork too small a computation
into a separate thread. One useful measure of a threads implementation on a
multi-processor is the smallest computation for which it is profitable to fork a
thread.

Despite these cautions, be aware that my experience has been that
programmers are as likely to err by creating too few threads as by creating too
many.

7. USING INTERRUPT: DIVERTING THE FLOW OF CONTROL

The purpose of the “Interrupt” method of a thread is to tell the thread that it
should abandon what it is doing, and let control return to a higher level
abstraction, presumably the one that made the call of “Interrupt”. For example, on
a multi-processor it might be useful to fork multiple competing algorithms to
solve the same problem, and when the first of them completes you abort the
others. Or you might embark on a long computation (e.g., a query to a remote
database server), but abort it if the user clicks a CANCEL button. Or you might
want to clean up an object that uses some daemon threads internally.

For example, we could add a “Dispose” method to “PipelinedRasterizer” to
terminate its two threads when we’ve finished using the “PipelinedRasterizer”
object. Notice that unless we do this the “PipelinedRasterizer” object will never be
garbage collected, because it is referenced by its own dæmon threads.*

class PipelinedRasterizer: IDisposable {

 public void Dispose() {
 lock(this) {
 if (t1 != null) t1.Interrupt();
 if (t2 != null) t2.Interrupt();
 t1 = null; t2 = null;
 }
 }

 void Rasterizer() {
 try {
 while (true) {
 char c = (char)(rasterizeQ.Dequeue());
 // Convert character to a bitmap …
 Bitmap b = f.Render(c);
 paintQ.Enqueue(b);
 }
 } catch (ThreadInterruptedException) { }
 }

* The garbage collector could notice that if the only reference to an object is from threads
that are not accessible externally and that are blocked on a wait with no timeout, then the
object and the threads can be disposed of. Sadly, real garbage collectors aren’t that clever.

32 . An Introduction to Programming with C# Threads

 void Painter() {
 try {
 while (true) {
 Bitmap b = (Bitmap)(paintQ.Dequeue());
 // Paint the bitmap onto the graphics device …
 d.PaintBitmap(b);
 }
 } catch (ThreadInterruptedException) { }
 }

 …
} // class PipelineRasterizer

There are times when you want to interrupt a thread that is performing a long
computation but making no calls of “Wait”. The C# documentation is a little
vague about how to do this, but most likely you can achieve this effect if the long
computation occasionally calls “Thread.Sleep(0)”. Earlier designs such as Java and
Modula included mechanisms designed specifically to allow a thread to poll to
see whether it has an interrupt pending (i.e., whether a call of “Wait” would
throw the “Interrupted” exception).

Modula also permitted two sorts of wait: alertable and non-alertable. This
allowed an area of your program to be written without concern for the possibility
of a sudden exception arising. In C# all calls of “Monitor.Wait” are interruptible (as
are the corresponding calls in Java), and so to be correct you must either arrange
that all calls of “Wait” are prepared for the “Interrupted” exception to be thrown,
or you must verify that the Interrupt method will not be called on threads that
are performing those waits. This shouldn’t be too much of an imposition on your
program, since you already needed to restore monitor invariants before calling
“Wait”. However you do need to be careful that if the “Interrupted” exception is
thrown then you release any resources being held in the stack frames being
unwound, presumably by writing appropriate “finally” statements.

The problem with thread interrupts is that they are, by their very nature,
intrusive. Using them will tend to make your program less well structured. A
straightforward-looking flow of control in one thread can suddenly be diverted
because of an action initiated by another thread. This is another example of a
facility that makes it harder to verify the correctness of a piece of program by
local inspection. Unless alerts are used with great restraint, they will make your
program unreadable, unmaintainable, and perhaps incorrect. I recommend that
you very rarely use interrupts, and that the “Interrupt” method should be called
only from the abstraction where the thread was created. For example, a package
should not interrupt a caller’s thread that happens to be executing inside the
package. This convention allows you to view an interrupt as an indication that
the thread should terminate completely, but cleanly.

There are often better alternatives to using interrupts. If you know which
object a thread is waiting on, you can more simply prod it by setting a Boolean
flag and calling “Monitor.Pulse”. A package could provide additional entry points
whose purpose is to prod a thread blocked inside the package on a long-term
wait. For example, instead of implementing “PipelinedRasterizer.Dispose” with the

 An Introduction to Programming with C# Threads . 33

“Interrupt” mechanism we could have added a “Dispose” method to the “Queue”
class, and called that.

Interrupts are most useful when you don’t know exactly what is going on.
For example, the target thread might be blocked in any of several packages, or
within a single package it might be waiting on any of several objects. In these
cases an interrupt is certainly the best solution. Even when other alternatives are
available, it might be best to use interrupts just because they are a single unified
scheme for provoking thread termination.

Don’t confuse “Interrupt” with the quite distinct mechanism called “Abort”,
which I’ll describe later. Only “Interrupt” lets you interrupt the thread at a well-
defined place, and it’s the only way the thread will have any hope of restoring
the invariants on its shared variables.

8. ADDITIONAL TECHNIQUES

Most of the programming paradigms for using threads are quite simple. I’ve
described several of them earlier; you will discover many others as you gain
experience. A few of the useful techniques are much less obvious. This section
describes some of these less obvious ones.

8.1. Up-calls

Most of the time most programmers build their programs using layered
abstractions. Higher level abstractions call only lower level ones, and
abstractions at the same level do not call each other. All actions are initiated at
the top level.

This methodology carries over quite well to a world with concurrency. You
can arrange that each thread will honor the abstraction boundaries. Permanent
dæmon threads within an abstraction initiate calls to lower levels, but not to
higher levels. The abstraction layering has the added benefit that it forms a
partial order, and this order is sufficient to prevent deadlocks when locking
objects, without any additional care from the programmer.

This purely top-down layering is not satisfactory when actions that affect
high-level abstractions can be initiated at a low layer in your system. One
frequently encountered example of this is on the receiving side of network
communications. Other examples are user input, and spontaneous state changes
in peripheral devices.

Consider the example of a communications package dealing with incoming
packets from a network. Here there are typically three or more layers of dispatch
(corresponding to the data link, network and transport layers in OSI
terminology). If you try to maintain a top-down calling hierarchy, you will find
that you incur a context switch in each of these layers. The thread that wishes to
receive data from its transport layer connection cannot be the thread that
dispatches an incoming Ethernet packet, since the Ethernet packet might belong
to a different connection, or a different protocol (for example, UDP instead of
TCP), or a different protocol family altogether (for example, DECnet instead of
IP). Many implementers have tried to maintain this layering for packet reception,

34 . An Introduction to Programming with C# Threads

and the effect has been uniformly bad performance—dominated by the cost of
context switches.

The alternative technique is known as “up-calls” [6]. In this methodology,
you maintain a pool of threads willing to receive incoming data link layer (e.g.,
Ethernet) packets. The receiving thread dispatches on Ethernet protocol type and
calls up to the network layer (e.g., DECnet or IP), where it dispatches again and
calls up to the transport layer (e.g., TCP), where there is a final dispatch to the
appropriate connection. In some systems, this up-call paradigm extends into the
application. The attraction here is high performance: there are no unnecessary
context switches.

You do pay for this performance. As usual, the programmer’s task has been
made more complicated. Partly this is because each layer now has an up-call
interface as well as the traditional down-call interface. But also the
synchronization problem has become more delicate. In a purely top-down
system it is fine to hold one layer’s lock while calling a lower layer (unless the
lower layer might block on an object waiting for some condition to become true
and thus cause the sort of nested monitor deadlock we discussed earlier). But
when you make an up-call you can easily provoke a deadlock involving just the
locks—if an up-calling thread holding a lower level lock needs to acquire a lock
in a higher level abstraction (since the lock might be held by some other thread
that’s making a down-call). In other words, the presence of up-calls makes it
more likely that you will violate the partial order rule for locking objects. To
avoid this, you should generally avoid holding a lock while making an up-call
(but this is easier said than done).

8.2. Version stamps and caching

Sometimes concurrency can make it more difficult to use cached information.
This can happen when a separate thread executing at a lower level in your
system invalidates some information known to a thread currently executing at a
higher level. For example, information about a disk volume might change—
either because of hardware problems or because the volume has been removed
and replaced. You can use up-calls to invalidate cache structures at the higher
level, but this will not invalidate state held locally by a thread. In the most
extreme example, a thread might obtain information from a cache, and be about
to call an operation at the lower level. Between the time the information comes
from the cache and the time that the call actually occurs, the information might
have become invalid.

A technique known as “version stamps” can be useful here. In the low level
abstraction you maintain a counter associated with the true data. Whenever the
data changes, you increment the counter. (Assume the counter is large enough to
never overflow.) Whenever a copy of some of the data is issued to a higher level,
it is accompanied by the current value of the counter. If higher level code is
caching the data, it caches the associated counter value too. Whenever you make
a call back down to the lower level, and the call or its parameters depend on
previously obtained data, you include the associated value of the counter. When
the low level receives such a call, it compares the incoming value of the counter
with the current truth value. If they are different it returns an exception to the

 An Introduction to Programming with C# Threads . 35

higher level, which then knows to re-consider its call. (Sometimes, you can
provide the new data with the exception). Incidentally, this technique is also
useful when maintaining cached data across a distributed system.

8.3. Work crews (thread pools)

There are situations that are best described as “an embarrassment of
parallelism”, when you can structure your program to have vastly more
concurrency than can be efficiently accommodated on your machine. For
example, a compiler implemented using concurrency might be willing to use a
separate thread to compile each method, or even each statement. In such
situations, if you create one thread for each action you will end up with so many
threads that the scheduler becomes quite inefficient, or so many that you have
numerous lock conflicts, or so many that you run out of memory for the stacks.

Your choice here is either to be more restrained in your forking, or to use an
abstraction that will control your forking for you. Such an abstraction was first
described in Vandevoorde and Roberts’ paper [16], and is available to C#
programmers through the methods of the “ThreadPool” class:

public sealed class ThreadPool { … }

The basic idea is to enqueue requests for asynchronous activity and to have a
fixed pool of threads that perform the requests. The complexity comes in
managing the requests, synchronizing between them, and coordinating the
results.

Beware, though, that the C# “ThreadPool” class uses entirely static methods –
there is a single pool of 25 threads for your entire application. This is fine if the
tasks you give to the thread pool are purely computational; but if the tasks can
incur delays (for example, by making a network RPC call) then you might well
find the built-in abstraction inadequate.

An alternative proposal, which I have not yet seen in practice, is to
implement “Thread.Create” and “Thread.Start” in such a way that they defer
actually creating the new thread until there is a processor available to run it. This
proposal has been called “lazy forking”.

8.4. Overlapping locks

The following are times when you might use more than one lock for some data.
Sometimes when it’s important to allow concurrent read access to some data,

while still using mutual exclusion for write access, a very simple technique will
suffice. Use two (or more) locks, with the rule that any thread holding just one
lock can read the data, but if a thread wants to modify the data it must acquire
both (or all) locks.

Another overlapping lock technique is often used for traversing a linked list.
Have one lock for each element, and acquire the lock for the next element before
releasing the one for the current element. This requires explicit use of the “Enter”
and “Exit” methods, but it can produce dramatic performance improvements by
reducing lock conflicts.

36 . An Introduction to Programming with C# Threads

9. ADVANCED C# FEATURES

Throughout this paper I’ve restricted the discussion to a small subset of the
“System.Threading” namespace. I strongly recommend that you restrict your
programming to this subset (plus the “System.Threading.ReaderWriterLock” class)
as much as you can. However, the rest of the namespace was defined for a
purpose, and there are times when you’ll need to use parts of it. This section
outlines those other features.

There are variants of “Monitor.Wait” that take an additional argument. This
argument specifies a timeout interval: if the thread isn’t awoken by “Pulse”,
“PulseAll” or “Interrupt” within that interval, then the call of “Wait” returns
anyway. In such a situation the call returns “false”.

There is an alternative way to notify a thread that it should desist: you call
the thread’s “Abort” method. This is much more drastic and disruptive than
“Interrupt”, because it throws an exception at an arbitrary and ill-defined point
(instead of just at calls of “Wait”, “Sleep” or “Join”). This means that in general it
will be impossible for the thread to restore invariants. It will leave your shared
data in ill-defined states. The only reasonable use of “Abort” is to terminate an
unbounded computation or a non-interruptible wait. If you have to resort to
“Abort” you will need to take steps to re-initialize or discard affected shared
variables.

Several classes in “System.Threading” correspond to objects implemented by
the kernel. These include “AutoResetEvent”, “ManualResetEvent”, “Mutex”, and
“WaitHandle”. The only real benefit you’ll get from using these is that they can be
used to synchronize between threads in multiple address spaces. There will also
be times when you need them to synchronize with legacy code.

The “Interlocked” class can be useful for simple atomic increment, decrement
or exchange operations. Remember that you can only do this if your invariant
involves just a single variable. “Interlocked” won’t help you when more than one
variable is involved.

10. BUILDING YOUR PROGRAM

A successful program must be useful, correct, live (as defined below) and
efficient. Your use of concurrency can impact each of these. I have discussed
quite a few techniques in the previous sections that will help you. But how will
you know if you have succeeded? The answer is not clear, but this section might
help you towards discovering it.

The place where concurrency can affect usefulness is in the design of the
interfaces to library packages. You should design your classes with the
assumption that your callers will be using multiple threads. This means that you
must ensure that all the methods are thread re-entrant (i.e., they can be called by
multiple threads simultaneously), even if this means that each method
immediately acquires a single shared lock. You must not return results in shared
static variables, nor in shared allocated storage. Your methods should be
synchronous, not returning until their results are available—if your caller wants
to do other work meanwhile, he can do it in other threads. Even if you don’t

 An Introduction to Programming with C# Threads . 37

presently have any multi-threaded clients for a class, I strongly recommend that
you follow these guidelines so that you will avoid problems in the future.

Not everyone agrees with the preceding paragraph. In particular, most of the
instance methods in the libraries provided with C# (those in the CLR and the
.Net platform SDK) are not thread-safe. They assume that an object instance is
called from only one thread at a time. Some of the classes provide a method that
will return a correctly synchronized object instance, but many do not. The reason
for this design decision is that the cost of the “lock” statement was believed to be
too high to use it where it might be unnecessary. Personally, I disagree with this:
the cost of shipping an incorrectly synchronized program can be very much
higher. In my opinion, the correct solution is to implement the “lock” statement
in a way that is sufficiently cheap. There are known techniques to do this [5].

By “correct” I mean that if your program eventually produces an answer, it
will be the one defined by its specification. Your programming environment is
unlikely to provide much help here beyond what it already provides for
sequential programs. Mostly, you must be fastidious about associating each piece
of data with one (and only one) lock. If you don’t pay constant attention to this,
your task will be hopeless. If you use locks correctly, and you always use wait for
objects in the recommended style (re-testing the Boolean expression after
returning from “Wait”), then you are unlikely to go wrong.

By “live”, I mean that your program will eventually produce an answer. The
alternatives are infinite loops or deadlock. I can’t help you with infinite loops. I
believe that the hints of the preceding sections will help you to avoid deadlocks.
But if you fail and produce a deadlock, it should be quite easy to detect.

By “efficient”, I mean that your program will make good use of the available
computer resources, and therefore will produce its answer quickly. Again, the
hints in the previous sections should help you to avoid the problem of
concurrency adversely affecting your performance. And again, your
programming environment needs to give you some help. Performance bugs are
the most insidious of problems, since you might not even notice that you have
them. The sort of information you need to obtain includes statistics on lock
conflicts (for example, how often threads have had to block in order to acquire
this lock, and how long they then had to wait for an object) and on concurrency
levels (for example, what was the average number of threads ready to execute in
your program, or what percentage of the time were “n” threads ready).

In an ideal world, your programming environment would provide a
powerful set of tools to aid you in achieving correctness, liveness and efficiency
in your use of concurrency. Unfortunately in reality the most you’re likely to
find today is the usual features of a symbolic debugger. It’s possible to build
much more powerful tools, such as specification languages with model checkers
to verify what your program does [10], or tools that detect accessing variables
without the appropriate locks [15]. So far, such tools are not widely available,
though that is something I hope we will be able to fix.

One final warning: don’t emphasize efficiency at the expense of correctness.
It is much easier to start with a correct program and work on making it efficient,
than to start with an efficient program and work on making it correct.

38 . An Introduction to Programming with C# Threads

11. CONCLUDING REMARKS

Writing concurrent programs has a reputation for being exotic and difficult. I
believe it is neither. You need a system that provides you with good primitives
and suitable libraries, you need a basic caution and carefulness, you need an
armory of useful techniques, and you need to know of the common pitfalls. I
hope that this paper has helped you towards sharing my belief.

Butler Lampson, Mike Schroeder, Bob Stewart and Bob Taylor caused me to
write the original version of this paper (in 1988), and Chuck Thacker persuaded
me to revise it for C# (in 2003). If you found it useful, thank them.

REFERENCES

1. BACON, A. et al. The "double-checked locking is broken" declaration. At
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html (undated).

2. BIRRELL, A. An Introduction to programming with threads. SRC Research Report 35.
Digital Equipment Corporation (January 1989).

3. BIRRELL, A., AND NELSON, B. Implementing remote procedure calls. ACM Trans.
Comput. Syst. 2, 1 (Feb. 1984), 39-59.

4. BIRRELL, A., GUTTAG, J., HORNING, J. AND LEVIN, R. Synchronization primitives for a
multiprocessor: a formal specification. In Proceedings of the 11th Symposium on
Operating System Principles (Nov. 1987), 94-102.

5. BURROWS, M. Implementing unnecessary mutexes. In Computer Systems: Papers for
Roger Needham (Feb. 2003), 39-44.

6. CLARK, D. The structuring of systems using up-calls. In Proceedings of the 10th
Symposium on Operating System Principles (Dec. 1985), 171-180.

7. GOSLING, G. et al. The Java language specification second edition. Addison-Wesley (June
2000).

8. HADDON, B. Nested monitor calls. Operating Systems Review 11, 4 (Oct. 1977), 18-23.
9. HOARE, C.A.R. Monitors: An operating system structuring concept. Commun. ACM

17, 10 (Oct.1974), 549-557.
10. LAMPORT, L. Specifying Systems: The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley (July 2002).
11. LAMPSON, B AND REDELL, D. Experience with processes and monitors in Mesa.

Commun. ACM 23, 2 (Feb.1980), 105-117.
12. MICROSOFT CORPORATION. C# language specifications. Microsoft Press (2001).
13. ROVNER, P. Extending Modula-2 to build large, integrated systems. IEEE Software 3, 6

(Nov. 1986), 46-57.
14. SALTZER, J. Traffic control in a multiplexed computer system. Th., MAC-TR-30, MIT,

Cambridge, Mass. (July 1966).
15. SAVAGE, S, et al. Eraser: a dynamic race detector for concurrent programs. ACM Trans.

Comput. Syst. 15, 4 (Apr. 1997), 391-411.
16. VANDEVOORDE, M. AND ROBERTS, E. Workcrews: an abstraction for controlling

parallelism. SRC Research Report 42. Digital Equipment Corporation (April 1989).

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

	CONTENTS
	INTRODUCTION
	WHY USE CONCURRENCY?
	THE DESIGN OF A THREAD FACILITY
	Thread creation
	Mutual exclusion
	Waiting for a condition
	Interrupting a thread

	USING LOCKS: ACCESSING SHARED DATA
	Unprotected data
	Invariants
	Cheating
	Deadlocks involving only locks
	Poor performance through lock conflicts
	Releasing the lock within a “lock” statement

	USING WAIT AND PULSE: SCHEDULING SHARED RESOURCES
	Using “PulseAll”
	Spurious wake-ups
	Spurious lock conflicts
	Starvation
	Complexity
	Deadlock

	USING THREADS: WORKING IN PARALLEL
	Using Threads in User Interfaces
	Using Threads in Network Servers
	Deferring Work
	Pipelining
	The impact of your environment
	Potential problems with adding threads

	USING INTERRUPT: DIVERTING THE FLOW OF CONTROL
	ADDITIONAL TECHNIQUES
	Up-calls
	Version stamps and caching
	Work crews (thread pools)
	Overlapping locks

	ADVANCED C# FEATURES
	BUILDING YOUR PROGRAM
	CONCLUDING REMARKS

