450

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 5, SEPTEMBER 1980

A Universal File Server

A.D.BIRRELL anp R. M. NEEDHAM

Abstract—A file server is a utility provided in a computer connected
via a local communications network to a number of other computers.
File servers exist to preserve material for the benefit of client machines
or systems. It is desirable for a file server to be able to support multi-
ple file directory and access management systems, so that the designer
of a client system retains the freedom to design the system that best
suits him. For example, he may wish to use the file server to support
a predefined directory structure or as a swapping disk. The paper
explores the design issues associated with such a file server and pro-
poses some solutions.

Index Terms—Access control, directory, distributed computing, file
server, filing system, garbage collector.

I. INTRODUCTION

HE TERM file server has come into some currency as a

name for a utility, provided on a high performance local
communications network, the utility having as its main pur-
pose the storage and retrieval of bulk data. Such utilities have
been implemented with various degrees of complexity and
sophistication [5], [6]; possible uses range from conventional
file transfer to applications such as core-swapping which are
only sensible using a high bandwidth network.

At the simpler end of the spectrum, the server would appear
to a client as just a backing store device, the client being
totally responsible for any structure he wished to impose on
the data. A file server in this style would be responsible for
the algorithm used in allocating space on the storage medium
(typically, disks), and for transfers between the network and
the medium, but for little else. Requests to such a server
might take the following forms.

1) Allocate n units of storage, and tell me the starting
address.

2) Give me the contents of the n units starting at offset p
from address x.

3) Write the following 7 units into the storage starting at
offset p from address x.

4) The n units starting at address x are no longer required
and may be reallocated.

Such a server would be extremely simple, and its only func-
tion is the control of the physical storage medium.

At the opposite end of the spectrum, file servers have been
implemented with a very high-level interface. Such servers

Manuscript received June 14, 1978; revised November 8, 1978. This
work was supported in part by the Science Research Council.

A. D. Birrell was with the Computer Laboratory, University of
Cambridge, Cambridge, England. He is now with the Xerox Palo Alto
Research Center, Palo Alto, CA 94304.

R. M. Needham is with the Computer Laboratory, University of
Cambridge, Cambridge, England.

.appear to their clients much as one would expect a full-scale

filing system on a time-shared computer to appear. Such a
server would certainly have the concept of a file as an ab-
stract object, and would almost certainly support facilities
for access controls on files, for directory structures containing
groups of files, for the lookup of textual names of files, and
for interlocks on simultaneous access to files. Such a server
is likely to have the concept of a user, probably protected by
a password as in conventional time-sharing systems.

Between these two extremes there is a wide range of choice,
depending on design declsmns as to which facilities of a filing
system one chooses to centralize in the server, and which
facilities one leaves the client to implement. The simpler
extreme has as advantages its simplicity (in terms of design
and of implementation) and the freedom it leaves its clients—
they can each decide what form of directory structure they
prefer, what access controls they desire, and what form the
symbolic name of a file should take. The more complicated
extreme has the advantage that a client needs to implement
very little in his own computer to have available all the facil-
ities of a sophisticated filing system. It also makes very con-
venient the sharing of data, of complete files, and of direc-
tories between different client computers.

In many environments, all of these potential advantages are
simultaneously attractive. We would wish a simple, low-level,
file server in order to share an expensive resource, namely a
disk, whilst leaving us free to design the filing system most
appropriate to a particular client, but we would wish also to
have available a highJevel system shared between clients.
Further, we would prefer to have these various systems use
the same storage equipment in order to make better use of it,
to allow simultaneous use of it, and to allow sharing of data.
It is the purpose of this paper to describe a resolution of some
of the problems in the design of such a file server, and to show
alternatives that remain available.

II. D1vISION OF RESPONSIBILITIES

In order to provide the flexibility which we desire our file
server to have, we will distinguish between high-level func-
tions more properly associated with a filing system, and func-
tions belonging to a backing store server. Given such a distinc-
tion, it will then be possible to specify as the basic interface to
our file server the functions of a backing store server; filing
systems, available to all clients, could then be implemented
as superstructures built on the functions of the backing store
server. It is our belief that many functional aspects of the
management of data on backing store are common to a wide
range of filing systems and other uses of mass memory, and it

0098-5589/80/0900-0450$00.75 © 1980 IEEE

BIRRELL AND NEEDHAM: UNIVERSAL FILE SERVER

is these functions that we wish to include in the backing store
server. These functions should be specified at as high a level
as is compatible with generality of application. The remaining
functions are specific to particular uses of the backing store
server, and must be implemented by particular filing systems
or other clients of the backing store server.

The major function which we consider to exist only in the
filing system is the lookup of text names (or whatever abstract
names a particular filing system cares to implement), and their
translation into internal names which will be recognized by
the backing store server. To perférm this translation a filing
system will presumably maintain one or more directories. A
filing system will probably also impose some form of access
controls distinguishing between its various users. The backing
store server is concerned primarily with the maintenance of
a set of objects on its storage medium. Such objects would
each have an internal name, and all transactions accepted by
the backing store server would be in terms of these internal
names. The backing store server is the sole agency concerned
with allocating and relinquishing space on the storage medium.
In order that the backing store server can do this without any
knowledge of the structure of the client filing systems, a sepa-
rate and universal system of indexes is provided. This will be
described in the next section. Given an internal name, the
backing store server will be able to determine, probably by
lookup in a centralized table, where to find the object on the
storage medium. We will see below that this table will be use-
ful for keeping other information regarding a particular ob-
ject. With such a division of responsibilities, it would be
feasible (indeed, straightforward) to use the backing store
server simultaneously for a common shared filing system, for
clients running private or shared filing systems, and for clients
using the server just for backing storage.

Each client could decide at any time whether he wished to
use the facilities of the common filing system, or wished to
use just the facilities of the backing store server. A major
design constraint is that each filing system should be able to
coexist peacefully with all other users of the backing store
server.

III. MANAGEMENT OF BACKING STORE OBJECTS

The backing store server is responsible for maintaining an
object as long as that object is required by any client, and for
recovering space when an object is no longer required. We pro-
pose here a management scheme which appears to have suf-
ficient generality for all purposes, and which is acceptably
efficient. The backing store server considers each object to
be either a segment or an index; this distinction of type is a
fixed property of each object. A segment can be read or
written at will by any client using it; an index is accessed
and altered only by the backing store server. An index con-
tains, primarily, a set of internal names or Inames of other
objects—these preserved Inames are numbered within a par-
ticular index as 1,2,3,4,---. The backing store server will
guarantee to maintain an object only so long as its Iname ap-
pears in at least one index. It is the responsibility of a par-
ticular client or filing system to ensure, by means of suitable
requests to the file server, that the Inames of all objects in

451

which it is interested appear in an index. Since an index is
itself an object, its Iname can be preserved in an index (and
should, if the index is not to disappear). There is one master
index whose existence the backing store server will guarantee.
The set of objects maintained by the backing store server can
thus be seen as a general naming network; no restrictions are
placed on this network, which could become cyclic.

In order to determine efficiently whether the space used by
an object may be freed, the backing store server can use a
mixed strategy of reference counts and asynchronous garbage
collection, as adopted in the CAP filing system [1], [2]. As-
sociated with every object is a reference count; this is incre-
mented whenever the Iname of an object is preserved in an
index and decremented whenever its Iname is removed from
an index. It is in order to ensure that these side-effects of
index operations occur that operations on indexes are con-
strained to be done inside the backing store server. For an
object whose type is segment, the space may be freed if and
only if the reference count falls to zero. Because of the pos-
sible cyclicity of the network, a garbage collector may be
needed to determine which indexes may be freed—this is an
acceptably efficient technique, since the garbage collector
need only consider indexes and does not look at segments.
Note that, as on the CAP, the existence of reference counts
for indexes gives us an additional check on the correctness of
our garbage collector.

The facilities provided by the file server for filing systems
and other clients would include the following forms.

1) Create object of given type and size, and preserve its
Iname at offset » in index x.

2) Change the size of object x by » units.

3) Preserve the Iname of object x at offset n in index y.

4) Remove entry n of index y.

5) Give the contents of » units starting at offset p in object
x.
6) Write the following » units into the storage starting at
offset p in object x.

Note that facility 1) ensures that the Iname of a newly
created object is preserved in an index before it is given to
a client, since otherwise the backing store server could validly
free the space before the client had made use of facility 3).

Given such facilities, a client could implement his favorite
filing system, provided he equips himself with the Iname of
an index preserved in or via the master index. For example,
if he wanted a simple two-level system he might well arrange
a structure such as the following.

In his initial index he preserves one entry of type segment,
and a number of type index. The indexes are going to contain
the Inames of his users’ segments, and correspond to user file
directories or UFD’s, and the segment corresponds to his
master file directory or MFD. In his MFD he will maintain
text names and access controls for the UFD’s. In each UFD
he will maintain a segment containing text names and access
controls for users’ files, and will preserve entries for each file.
The resulting structure might be pictured as in Fig. 1.

It is the responsibility of a filing system to:

1) equip itself with the Iname of its initial index;

2) preserve the Iname of each user object in some index;

452
Master Index
. Iname for systemlA]
_ Iname torsystem|B]
| _tname forsystem(c]

b [8]"s initial Index *s MFD Segment

. _ -
Iname of MFD segment | —--% "ARMN",2,
dnametoruep [a] f<h-r----) TADBT.T,
[lnameforurp [2] _ JE-L TR vRoiws
inameforUFD [3] j<--' } | ----------
................ '
. [
. <F----' | oo
.
Index for RMN’s UFD Segment for RMN’s UFD
)
-’ fname of UFD ".PIG", 1, FFRR,
" HOG", 2, CRRR,
4".TAPIR", 4, FFNN,
".ELEPHANT", 3, FNNN,
TTTTTTYT] eeeeaaae
.
b N .

Fig. 1.

3) remove such entries when the user deletes the file.

Further, the filing system may provide access control mecha-
nisms, translations to and from textual (or other) names, and
make available to its users as much or as little of the underly-
ing index network as it sees fit. Note that there is no reason
why an object (even an index) should not be shared between
filing systems, provided that they cooperate on its use. This
is considered further below.

IV. PROTECTION

If the backing store server is to be used by noncooperating
clients and multiple filing systems, it will be necessary to have
some degree of protection provided. The extent to which this
is needed will depend on the clients. The other machines on
the communications network may be:

1) distrusted totally, in that we require 100 percent assur-
ance of noninterference; this may include assurance of data
security;

2) distrusted, but we only require a believable assurance of
noninterference;

3) trusted in relation to some subset of the objects;

4) trusted totally.

Case 4) might arise, for example, if the clients in question

~were computers with fixed burnt-in programs, whereas 1) or
2) would be appropriate for computers running experimental
systems. We will assume here that the communications net-
work has a suitable amount of security for client-server com-
munication of data—the meaning of suitable may vary with
the application, from total encryption to open broadcasting.
We believe the most common requirement to be 3), provided

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 5, SEPTEMBER 1980

the probability of interference (accidental or deliberate) can
be made sufficiently small.

There are fundamentally two techniques available for pro-
tection in the backing store server/access control lists, or
capabilities. For an access control list system, we would as-
sociate with each object a list of those clients entitled to
use the object. This information would be maintained solely
by the backing store server, independently of any access con-
trols maintained by a filing system; its purpose is separation
of filing systems, not of the individual users of a particular
filing system. Note that, since the number of distinct clients
will be fairly small, the access control list could be represented
in a compact manner (such as a bit map). The alternative ap-
proach, which we prefer, is to base the protection on capabil-
ities. The analog in a distributed system of the hardware-pro-
tected capabilities of a centralized system is the use as our
Inames of unique identifiers chosen from a sparse name space.
Such identifiers can readily be constructed in such a manner as
to have as low a probability of accidental or deliberate forgery
as we desire. For example, we can construct one whose first
field is one greater than that used for the previous unique iden-
tifier, and whose second field is selected by a random number
generator having uniform distribution. Thus, the first field is
intended to give the identifier its uniqueness, the second gives
it its sparseness. For example, if the first field is 48 bits wide
then it will not repeat within any conceivable lifetime of the
system. If the second field is 48 bits wide, then the probabil-
ity of a given 96-bit pattern being a valid internal name would
be at most 1 in 28, By choosing a wider second field, this
probability could be made as small as desired (and could, for
example, be made less than the probability of undetected hard-
ware error).

These alternative schemes have advantages and disadvantages
analogous to those of the corresponding schemes in a central-
ized system; additionally, there are advantages and disadvan-
tages peculiar to their use in a distributed system. One dif-
ficulty with the access control list scheme is determining the
identity of a client. In some environments, the address of a
computer will be sufficient to identify the client, but more
commonly we will be concerned with which program is run-
ning in the computer, rather than the physical computer; ad-
ditionally, in some cases we may have more than one client
in a given computer. Such considerations would lead almost
inevitably to some form of password protection, which is only
a short step from the use of sparse unique identifiers. Even
with an access control list system, we would probably wish to
make use of unique identifiers (not necessarily sparse) as in-
ternal names in order to prevent a client accidentally reusing
a name which the backing store server considers to have been
freed and reissued (due, for example, to some programming
error by the client).

One difficulty that might arise with use of the sparse unique
identifier scheme is that it would be inconvenient to give dif-
ferent clients different access rights to a particular object (for
example, read-only to one client but read-write to another).
This could be achieved with a scheme of giving the clients
different Inames for the same object, for example, by includ-
ing access bits protected by an encryption process. However,

BIRRELL AND NEEDHAM: UNIVERSAL FILE SERVER

the complexities and confusions that would arise would be
similar to using a different address for reading a word of mem-
ory from that used when writing to the same word. As with
capabilities, sparse unique identifiers pose a problem of re-
vocation, although as with capabilities this can in principle
be solved by adding an indirection [4]. One distinct advan-
tage of the sparse unique identifiers is that they provide a
protected name which a client can happily give to, and accept
from, his users.

The choice between these alternatives appears to depend on
how elaborate one desires to make the protection at the level
of the backing store server. If a simple on-off protection is
thought sufficient, then sparse unique identifiers seem prefer-
able; for more elaborate schemes, access control lists start to
gain attractiveness. On balance, our preference at present is
for sparse unique identifiers. We emphasize again that this
protection is in addition to any access controls imposed by
filing systems constructed using the backing store server.

V. GENERAL CONSIDERATIONS

If the technique of providing a low-level backing store
server for use simultaneously by several clients and filing
systems is to be successful, then there are two important
considerations: the backing store server must provide suf-
ficient facilities to allow the efficient implementation of the
desired filing systems, and a filing system should preferably
not have to pay, in increased complexity or reduced perfor-
mance, for facilities of the backing store server which it does
not use. It seems unlikely that we could design a single back-
ing store server to suit all possible filing systems; the most we
can expect is that it should be possible, in designing a particu-
lar backing store server, to make it acceptable to all of its
clients. There are, however, some design considerations for
the backing store server which have general applicability.

We proposed above, that the backing store server should pro-
vide a naming network as general as any we have seen in con-
ventional filing systems. This will only be acceptable if the
generality does not impose any expense when only a less gen-
eral subset is used. It would seem that this criterion can be
satisfied; the only additional expense incurred is if the asyn-
chronous garbage collector runs, and it need only run if at
some stage the reference count for an index is decremented
to a nonzero value. This will never happen if, for example,
only a tree-structured network is ever produced.

Another example of a desired facility might be to allow the
use of demountable disk volumes. Again, this can be provided
within the generality of our naming network if we adopt a
scheme similar to that used by UNIX [3]. We need only apply
the constraint that the Iname of an object on a demountable
volume can be preserved only in an index which resides on the
same disk volume as the object, with the exception that a load
volume request will specify the Iname of an index in the new
volume to be preserved in an index on an already mounted
volume.

A third problem which might arise would be whether ade-
quate arrangements can be made for filing system integrity

453

and for backup, incremental dumping and similar facilities. It
would seem that there is little difficulty in including these as
facilities of the backing store server, common to all clients.
Whether they could be implemented by an individual client
if they were absent from the backing store server seems less
likely, although we have not investigated this in detail. Similar
remarks would apply to the provision of facilities for indivis-
ible updates to an object.

Accounting is well-known to present problems in file sys-
tems with access via general naming networks. It is possible to
devise algorithms which do roughly the right thing, but it
seems that in a file server with the general purposes of ours
they would be unnecessarily cumbersome. This is because we
envisage the file server being used by a small number of pri-
mary clients, namely the filing system providers, which will
be able to account among their own customers in a manner
which will usually be less general and less complex. Further-
more, we expect that the filing systems will be mainly dis-
joint, in the sense that they will share only a small proportion
of their files. Accordingly, we would propose that each file
be charged to the filing system that initially created it. Within
that filing system it can be charged for as the filing system
designer chooses. If charging to the creating system is not
appropriate in some cases of shared files, then it will be left
to negotiation between the filing system managers. It would
appear that the most convenient way to handle these matters
is to have the file server require a capability for a charge site
whenever a file is created. We would expect there to be one
charging capability per major client.

We can see no way of finally resolving the question of
whether we can design a backing store server which avoids
precluding facilities desired by some of its clients, without
causing undue expense to its other clients, other than to em-
bark on detailed design, implementation and use of a particu-
lar backing store server. It is our belief that no insurmount-
able difficulties will be found in this area.

REFERENCES

{11 R. M. Needham and A. D. Birrell, “The CAP filing system,” pre-
sented at the 6th Symp. on Oper. Syst. Principles, 1977.

[2] A. D. Birrell and R. M. Needham, “An asynchronous garbage
collector for the CAP filing system,” Oper. Syst. Rev., Apr. 1978.

[3] D."M. Ritchie and K. Thompson, “The UNIX time-sharing sys-
tem,” Commun. Ass. Comput. Mach., July 1974.

[4] D. D. Redell, “Naming and protection in extensible operating sys-
tems,” M.I.T., Cambridge, Tech. Rep. MAC-TR-140, 1974.

[S] H. Dewar, V. Eachus, K. Humphry, and P. McLellan, “The file-

store,” Dep. Comput. Sci., Univ. Edinburgh, Oct. 1977.

[6] J. Israel, J. Mitchell, and H. Sturgis, “Separating data from func-

tion in a distributed file system,” in Proc. 2nd Int. Symp. Oper.

Syst., IRIA, Rocquencourt, France, Oct. 1978.

A. D. Birrell, photograph and biography not available at the time of
publication.

R. M. Needham, photograph and biography not available at the time
of publication.

